
33
00

22
04

.0
0

Concept
User Manual

Volume 1
840 USE 503 00 eng Version 2.6 - SR1

© 2002 Schneider Electric All Rights Reserved

II

III

Table of Contents

About the Book . XIII

Chapter 1 General description of Concept . 1
1.1 General description of Concept. 3

At a Glance . 3
Introduction . 4
PLC hardware configuration . 5

1.2 Programming. 6
At a Glance . 6
General information. 7
Libraries. 8
Editors . 9
Online functions. 14
Communication . 14
Secure Application . 15
Utility program . 17

Chapter 2 New Performance Attributes of Concept 2.6 in
Comparison with Concept 2.5 .21
New Performance Attributes of Concept 2.6 Compared with Concept 2.5 22

Chapter 3 Project structure .29
At a Glance . 29
Project Structure and Processing . 30
Programs. 35
Sections. 40
Configuration data. 46

IV

Chapter 4 Creating a Project . 47
At a Glance . 47
Overview . 48
Step 1: Launching Concept . 49
Step 2: Configuring the PLC . 50
Step 2.1: Required Configuration. 51
Step 2.2: Optional Configuration . 53
Step 3: Creating the User Program . 57
Step 4: Save . 60
Step 5: Loading and Testing . 61
Step 6: Optimize and Separate . 66
Step 7: Documentation . 67

Chapter 5 PLC configuration . 69
At a Glance . 69

5.1 General information about hardware configuration . 71
At a Glance . 71
General information . 72
Proceed in the following way with the configuration . 73

5.2 Configuration in OFFLINE and ONLINE mode . 74
At a Glance . 74
General information . 75
Available Functions in OFFLINE and ONLINE Modes. 76

5.3 Unconditional Configuration. 78
At a Glance . 78
Precondition. 79
PLC selection. 80
CPU Selection for the PLC Type . 80
PLC memory mapping . 83
Loadables . 84
Segment manager . 86
I/O Map . 87

5.4 Optional configuration . 90
At a Glance . 90
Settings for ASCII Messages. 91
Making Additional Functions Available in the Configurator 92
Data Exchange between Nodes on the Modbus Plus Network 93
Protecting Data in the State RAM before Access . 94
Parameterize interfaces. 94
Special Options . 96

5.5 Backplane Expander Config . 98
At a glance. 98
Generals to Backplane Expander . 99
Edit I/O Map. 99
Error handling . 100

V

5.6 Configuration of various network systems. 101
At a Glance . 101
Configure INTERBUS system . 102
Configure Profibus DP System . 103
Configure Ethernet . 104
RTU extension. 105
Ethernet I/O Scanner. 106
How to use the Ethernet / I/O Scanner . 109

5.7 Quantum Security Settings in the Configurator . 111
Quantum Security Parameters . 112

Chapter 6 Main structure of PLC Memory and optimization of
memory . 115
At a Glance . 115

6.1 Main structure of the PLC Memory . 117
General structure of the PLC Memory. 117

6.2 General Information on Memory Optimization. 118
Introduction . 118
Possibilities for Memory Optimization . 119
PLC-Independent . 119

6.3 Memory Optimization for Quantum CPU X13 0X and 424 02 122
Introduction . 122
General Information on Memory Optimization for Quantum CPU X13 0X
and 424 02 . 123
Selecting Optimal EXEC File. 125
Using the Extended Memory (State RAM for 6x references) 129
Harmonizing the IEC Zone and LL984 Zone. 131
Harmonizing the Zones for Global Data and IEC Program Memory 133

6.4 Memory Optimization for Quantum CPU 434 12(A) and 534 14(A) 136
Introduction . 136
General Information on Memory Optimization for Quantum CPU 434 12(A)
and 534 14(A) . 137
Harmonizing IEC Zone and LL984 Zone. 139
Harmonizing the Zones for Global Data and IEC Program Memory
(CPU 434 12(A) / 534 14 (A)) . 144

6.5 Memory optimization for Compact CPUs . 147
At a Glance . 147
General Information on Memory Optimization for Compact CPUs 148
Harmonizing IEC Zone and LL984 Zone. 150
Harmonizing the Zones for Global Data and IEC Program Memory
(Compact) . 155

VI

6.6 Memory optimization for Momentum CPUs . 157
Introduction . 157
General Information on Memory Optimization for Momentum CPUs. 158
Selecting Optimal IEC Zone. 160
Harmonizing the Zones for Global Data and IEC Program Memory
(Momentum). 161

6.7 Memory optimization for Atrium CPUs. 163
At a Glance . 163
General Information on Memory Optimization for Atrium CPUs 164
Harmonizing IEC Zone and LL984 Zone . 166
Harmonizing the Zones for Global Data and IEC Program Memory
(Atrium) . 171

Chapter 7 Function Block language FBD . 173
At a Glance . 173

7.1 General information about FBD Function Block. 175
7.2 FBD Function Block objects. 177

At a Glance . 177
Functions and Function Blocks (FFBs) . 178
Link . 182
Actual parameters . 182
Text Object. 184

7.3 Working with the FBD Function Block langauge . 185
At a Glance . 185
Positioning Functions and Function Blocks . 186
FFB Execution Order . 187
Configuring Loops . 189

7.4 Code generation with the FBD Function Block language 190
Code Generation Options . 191

7.5 Online functions of the FBD Function Block language. 192
7.6 Creating a program with the FBD Function Block language 195

Chapter 8 Ladder Diagram LD . 199
At a Glance . 199

8.1 General information about Ladder Diagram LD. 201
8.2 Objects in Ladder Diagram LD. 204

At a Glance . 204
Contacts. 205
Coils . 206
Functions and Function Blocks (FFBs) . 209
Link . 214
Actual Parameters . 215
Text object . 217

VII

8.3 Working with the LD Ladder Diagram . 218
At a Glance . 218
Positioning Coils, Contacts, Functions and Function Blocks. 219
Execution sequence . 221
Configuring Loops . 221

8.4 Code generation with LD Ladder Diagram . 223
8.5 Online functions with the LD Ladder Diagram. 225
8.6 Creating a program withLD Ladder Diagram. 228

Chapter 9 Sequence language SFC .233
At a Glance . 233

9.1 General information about SFC sequence language . 235
9.2 SFC sequence language elements . 237

At a Glance . 237
Step. 238
Action . 240
Transition. 242
Transition section . 243
Link . 245
Jump . 246
Alternative Branch. 248
Alternative connection. 250
Parallel branch . 251
Parallel connection . 252
Text object. 252

9.3 Working with the SFC Sequence Language . 253
Introduction . 253
General information on editing objects . 254
Declaring step properties . 257
Declaring actions. 259
Identifier. 262
Declaring a Transition . 264
Alias Designations for Steps and Transitions . 266

9.4 Online functions of the SFC sequence language . 269
At a Glance . 269
Animation . 270
Controlling a Step String . 272
Learn monitoring times . 274
Transition diagnosis . 277

VIII

Chapter 10 Instruction list IL . 279
At a Glance . 279

10.1 General information about the IL instruction list. 281
10.2 Instructions. 283

At a Glance . 283
General information about instructions . 284
Operands . 285
Modifier . 287
Operators. 288
Tag. 291
Declaration (VAR...END_VAR) . 292
Comment . 294

10.3 IL instruction list operators . 295
At a Glance . 295
Load (LD and LDN) . 296
Store (ST and STN) . 297
Set (S) . 298
Reset (R) . 299
Boolean AND (AND, AND (), ANDN, ANDN ()) . 300
Boolean OR (OR, OR (), ORN, ORN ()) . 302
Boolean exclusive OR (XOR, XOR (), XORN, XORN ()) 304
Invert (NOT) . 305
Addition (ADD and ADD ()) . 306
Subtraction (SUB and SUB ()) . 307
Multiplication (MUL and MUL()) . 308
Division (DIV and DIV ()) . 309
Compare on "Greater Than" (GT and GT ()) . 310
Compare to "Greater than/Equal to" (GE and GE ()) . 311
Compare to "EQual to"(EQ and EQ ()) . 312
Compare to "Not Equal to" (NE and NE ()) . 313
Compare to "Less than/Equal to" (LE and LE ()) . 314
Compare to "Less Than"(LT and LT ()) . 315
Jump to label (JMP, JMPC and JMPCN). 316
Call Function Block/DFB (CAL, CALC and CALCN) . 319
FUNCNAME. 319
Right parenthesis ")" . 319

10.4 Call up of functions, Function Blocks (EFBs) and
Derived Function Blocks (DFBs) . 320
At a Glance . 320
Use of Function Blocks and DFBs . 321
Invoking a Function Block/DFB . 323
Function call. 327

IX

10.5 Syntax check and Code generation . 329
At a Glance . 329
Syntax Check . 330
Code generation . 332

10.6 Online functions of the IL instruction list . 333
At a Glance . 333
Animation . 334
Monitoring field . 337

10.7 Creating a program with the IL instruction list . 338

Chapter 11 Structured text ST. .341
At a Glance . 341

11.1 General information about structured Text ST . 343
11.2 Expressions. 345

At a Glance . 345
Operands. 346
Operators . 347

11.3 Operators of the programming language of structured ST text 350
At a Glance . 350
Use of parentheses "()" . 351
FUNCNAME . 351
Exponentiation (**) . 351
Negation (-) . 352
Complement formation (NOT). 352
Multiplication (*). 352
Division (/) . 353
Modulo (MOD). 353
Addition (+) . 353
Subtraction (-) . 354
Comparison on "Greater Than" (>) . 354
Comparison on "Greater than/Equal to" (>=) . 354
Comparison with "EQual to" (=) . 354
Comparison with "Not Equal to" (<>). 355
Comparison with "Less Than"(<). 355
Comparison with "Less than or Equal to" (<=) . 355
Boolean AND (AND or &) . 356
Boolean OR (OR) . 356
Boolean Exclusive OR (XOR) . 356

11.4 Assign instructions . 357
At a Glance . 357
Instructions . 358
Assignment . 359
Declaration (VAR...END_VAR) . 360
IF...THEN...END_IF. 362
ELSE . 363

X

ELSIF...THEN . 364
CASE...OF...END_CASE. 365
FOR...TO...BY...DO...END_FOR. 366
WHILE...DO...END_WHILE . 368
REPEAT...UNTIL...END_REPEAT . 370
EXIT. 371
Empty instruction . 371
Comment . 371

11.5 Call up of functions, Function Blocks (EFBs) and
Derived Function Blocks (DFBs) . 372
At a Glance . 372
Function Block/DFB Invocation . 373
Function Invocation . 377

11.6 Syntax check and code generation . 379
At a Glance . 379
Syntax Check. 380
Code generation . 381

11.7 Online functions of the ST programming language . 382
11.8 Creating a program with the structured ST text . 384

Index . i

The chapters marked gray are not included in this
volume.

Chapter 12 Ladder Logic 984 . 387

Chapter 13 DFBs (Derived Function Blocks) . 415

Chapter 14 Macros . 455

Chapter 15 Variables editor . 479

Chapter 16 Project Browser . 491

Chapter 17 Derived data types . 499

Chapter 18 Reference data editor . 531

Chapter 19 ASCII Message Editor . 543

Chapter 20 Online functions. 561

Chapter 21 Import/Export . 619

Chapter 22 Documentation and Archiving . 661

XI

Chapter 23 Simulating a PLC . 677

Chapter 24 Concept Security . 691

Appendices . 705

Appendix A Tables of PLC-dependent Performance Attributes 707

Appendix B Windows interface . 729

Appendix C List of symbols and short cut keys. 751

Appendix D IEC conformity . 779

Appendix E Configuration examples. 805

Appendix F Convert Projects/DFBs/Macros .911

Appendix G Concept ModConnect. 915

Appendix H Convertion of Modsoft Programs . 923

Appendix I Modsoft and 984 References .929

Appendix J Presettings when using Modbus Plus for startup 933

Appendix K Presettings when using Modbus for startup 947

Appendix L Startup when using Modbus with the EXECLoader 953

Appendix M Startup when using Modbus with DOS Loader 973

Appendix N Startup when using Modbus Plus with the EXECLoader . . . 987

Appendix O Startup when using Modbus Plus with DOS Loader 1007

Appendix P EXEC files .1023

Appendix Q INI Files . 1027

Appendix R Interrupt Processing. 1041

Appendix S Automatic Connection to the PLC .1067

Glossary . 1077

XII

840 USE 503 00 October 2002 XIII

About the Book

At a Glance

Document Scope This user manual is intended to help you create a user program with Concept. It
provides authoritative information on the individual program languages and on
hardware configuration.

Validity Note The documentation applies to Concept 2.6 for Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Note: Additional up-to-date tips can be found in the Concept README file.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept IEC Block Library 840 USE 504 00

Concept EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00

About the Book

XIV 840 USE 503 00 October 2002

840 USE 503 00 October 2002 1

1
General description of Concept

At a Glance

Overview This chapter contains a general description of Concept. It should provide an initial
overview of Concept and its helper programs.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

1.1 General description of Concept 3

1.2 Programming 6

General description of Concept

2 840 USE 503 00 October 2002

General description of Concept

840 USE 503 00 October 2002 3

1.1 General description of Concept

At a Glance

Overview This section describes the performance features of Concept and provides an
overview of the hardware that may be programmed using Concept.

What’s in this
Section?

This section contains the following topics:

Topic Page

Introduction 4

PLC hardware configuration 5

General description of Concept

4 840 USE 503 00 October 2002

Introduction

Operating
System

Nowadays, a graphical user interface is a requirement for tasks of this kind. For this
reason, Concept has been established as an MS Windows application. Concept can
be operated in Windows 98, Windows 2000, Windows XP and Windows NT. These
operating systems have the advantage that they are used all over the world.
Therefore PC users have a basic knowledge of Windows technology and mouse
operation. In addition to this all common monitors, graphic cards and printers can be
used with MS Windows. As a user, you are not therefore tied to specific hardware
configurations.

International
Standard IEC
1131-3

For effective system configuration Concept offers a unified configuration
environment in accordance with international standard regulations IEC 1131-3.

PLC
Independence
when
Programming

The guiding principle behind the development of Concept was that all the system
configuration procedures and all the editors should have the same look and feel.
Most of the configuration steps, especially program creation, are designed
independently of the PLC to be programmed.

Graphical
Interface

The entire program is divided up into sections corresponding to the logic structure.
The Concept configuration tool enables objects (such as function blocks, steps, and
transitions) to be selected, placed and moved easily in graphical form. Plausibility
tests already take place in the SFC editor (Sequential Function Chart/ sequence
language) during object placing, as most of the links between objects are generated
automatically during placing. In the FBD editor (Function Block Diagram/Function
Block language) and LD editor (Ladder Diagram), plausibility tests take place when
blocks are linked. Unauthorized links, such as those between different data types
have already been rejected during configuration. A plausibility test also takes place
in the LL984 editor (Ladder Logic 984) during placing. In the IL editor (Instruction
List) and ST editor (Structured Text) unauthorized instructions are identified via a
colored outline. After the first successful program run, the program may be
optimized in graphic terms by moving links, blocks or texts to improve the display.

Print If desired the sections may be displayed with print preview information, in order to
individually control pages of documentation. Signals receive an expansive
designation with symbol names and comments. Unique notes on signal tracking are
provided at the signal breaks. The individual block processing sequences from one
section may be displayed and documented in the FBD editor.

General description of Concept

840 USE 503 00 October 2002 5

Import/Export
Functions

Sections from various projects can be combined as desired in another project using
import/export functions.
It is also possible to convert the sections of one IEC programmer language into
sections of another IEC programmer language.
Variables may be imported into and exported from the text using text delimited or
FactoryLink format.

Runtime System The runtime system on the PLC offers quick reactions to signal state process
changes (short cycle time), Simulating signal transmitters (See Simulating a PLC,
p. 677), Online display (See Online functions, p. 561), online parameter changes
and online program changes.

Open Software
Architecture

Concept possesses open software architecture to enable connection to external
systems (e.g. for visualization) via standard interfaces.

Online Help Special care was taken when developing the help function. The context sensitive
Online help function (See How the Online Help is set out, p. 748) provides support
for every configuration situation just by clicking on the subject using the mouse or
pressing the F1 key. Menu commands and dialogs are also context sensitive, as are,
function blocks and hardware components of the individual PLC families.

PLC hardware configuration

Description Concept is the unified projection tool for Quantum, Compact, Momentum and Atrium
products.

Hardware components (for example CPU, program memory, input/output units etc.)
can be specified before, during or after program creation.

This projection task can be performed both online (linked to the PLC) and locally (PC
alone). Projection is supported by Concept, and only suggests valid combinations.
Misprojection is therefore prevented. In online mode the projected hardware is
tested for plausibility immediately and input errors are rejected.

After linking the programmer device (PC) to the PLC, a plausibility test is performed
on the projected values (e.g. from the Variable Editor) using the actual hardware
resources and if necessary an error message will appear.

General description of Concept

6 840 USE 503 00 October 2002

1.2 Programming

At a Glance

Overview This section provides an overview of the editors which are available in Concept.

What’s in this
Section?

This section contains the following topics:

Topic Page

General information 7

Libraries 8

Editors 9

Online functions 14

Communication 14

Secure Application 15

Utility program 17

General description of Concept

840 USE 503 00 October 2002 7

General information

At a Glance As a solution for automatic control engineering tasks, Concept provides the following
IEC 1131-3 compatible programming languages:
l Function Block language FBD (Function Block Diagram) (See FBD editor, p. 10),
l LD (Ladder Diagram) (See LD editor, p. 10),
l Sequential language SFC (Sequential Function Chart) (See SFC editor, p. 11),
l Instruction List IL (See IL editor, p. 11) and
l Structured Text ST (See ST editor, p. 12).

The Modsoft orientated language is also available
l Ladder Diagram LL984 (Ladder Logic) (See LL984 editor, p. 12).

The IEC programming language (FBD, LD, SFC, ST and IL) basic elements are
Functions and Function Blocks, which make up assembled logic units. Concept
contains various Block libraries (See Libraries, p. 8) with predefined elementary
functions/Function Blocks (EFBs). In order to locate the individual EFBs without
difficulty, they are split into different groups according to their area of use.
For the Modsoft orientated programming language LL984, there is a Block library
(See Libraries, p. 8) with Instructions available.

Sections The control program is constructed from sections according to the logic structure.
Only one programming language is used within a section.
Merging these sections makes up the entire control program and the automation
device uses this to control the process. Any IEC sections (FBD, LD, SFC, IL, ST)
may be mixed within the program. The LL984 sections are always edited as a block
before the IEC sections.

Data types A subset of Data types from the international standard IEC1131-3 is available.
In the Data type editor (See Data type editor (DDT editor), p. 13) intrinsic data types
can be derived from IEC data types.

Using variables Variables for linking basic elements (objects) within a section are not usually
necessary with the graphic programming languages FBD, LD, SFC and LL984, as
these links are usually made graphically. (An additional link using variables is only
necessary for incredibly complex sections.) Graphic links are managed by the
system and therefore no projection requirement is created. The Variable Editor (See
Variable Editor, p. 13) is used to project all other variables such as those for data
transfer between various sections.

General description of Concept

8 840 USE 503 00 October 2002

Libraries

At a Glance For program creation Concept provides various block libraries with predefined
Functions and Function Blocks.
There are 2 different types of block libraries:
l IEC library

Block libraries for sections in the IEC programming languages (FBD, LD, SFC, IL
and ST)

l LL984 Library
Block library for sections in the Modsoft orientated programming language LL984

IEC library The following IEC libraries are available for applications:
l AKFEFB

This library contains the AKF/ALD EFBs, which are not covered by the IEC
library.

l ANA_IO
This library is for analog value processing.

l COMM
This library is used for exchanging data between a PLC and another Modbus,
Modbus Plus or Ethernet node.

l CONT_CTL
This library is for projecting process-engineering servoloops. It contains
controller, differential, integral, and polygon graph EFBs.

l DIAGNOSTICS
This library is used to investigate the control program for misbehaviors. It
contains action diagnostics, Reaction diagnostics, locking diagnostics, process
prerequisite diagnostics, dynamic diagnostics and signal group monitoring EFBs.

l EXPERTS
This library contains EFBs, which are necessary for using expert modules.

l EXTENDED
This library contains useful supplements for different libraries. It has EFBs for
creating average values, selecting maximum values, negating, triggering,
converting, creating a polygon with 1st degree interpolation, edge recognizing,
and for specifying an insensitive zone for control variables.

l FUZZY
This library contains EFBs for fuzzy logic.

l IEC
This library contains the EFBs defined in IEC 1131-3. It has for example EFBs for
mathematical calculations, counters, timers etc.

l LIB984
This library contains IEC 1131 compatible EFBs from the LL984 library, for
example, EFBs for register transfer.

General description of Concept

840 USE 503 00 October 2002 9

l SYSTEM
This library contains EFBs for using system functions. It has EFBs for cycle time
recognition, for various system cycle use, for SFC section control and for system
status display.

LL984 Library The LL984 library contains the LL984 editor instructions (blocks). It contains
instructions for mathematical calculations, counters, timers, instructions for
displaying system status, controller, differential and integral instructions and
instructions for exchanging data between a PLC and another Modbus or Modbus
Plus node.

Editors

At a Glance When generating a section specify which programming language you are going to
use.
The following editors are available for creating sections in the various programming
languages:
l FBD editor (Function Block Language) (See FBD editor, p. 10)
l LD editor (Ladder Diagram) (See LD editor, p. 10)
l SFC editor (Sequence language) (See SFC editor, p. 11)
l IL editor (Instruction List) (See IL editor, p. 11)
l ST editor (Structured Text) (See ST editor, p. 12)
l LL984 editor (Modsoft orientated Ladder Logic) (See LL984 editor, p. 12)
The following editors are available for declaring variables, creating data types and
displaying variables.
l the Variable Editor (for declaring variables), (See Variable Editor, p. 13)
l the reference data editor (for displaying and online changing of values) (See

Reference data editor, p. 13) and
l the data type editor (for creating user specific data types) (See Data type editor

(DDT editor), p. 13).
The following editors are available for creating user specific functions and Function
Blocks:
l Concept DFB (for creating Derived Function Blocks and macros) (See Concept

DFB, p. 17)
l Concept EFB (for creating user specific elementary functions and Function

Blocks) (See Concept EFB, p. 18)

General description of Concept

10 840 USE 503 00 October 2002

FBD editor The FBD editor (See Function Block language FBD, p. 173) is used for graphic
function plan programming according to IEC 1131-3.

Elementary functions, Elementary Function Blocks (EFBs) and Derived Function
Blocks (DFBs) are connected with signals (variables) onto FBD sections for the
function plan. The size of a FBD section is 23 lines and 30 columns.

EFBs are equipped with a fixed or variable number of input variables and may be
placed anywhere on the section. Variables and EFBs may have comments
separately added to them, column layouts on a section may be commented on
anywhere using text boxes. All EFBs may be performed conditionally or
unconditionally.

All the EFBs are divided into function- and use-orientated libraries in various groups,
to make them easier to locate.

LD editor The LD editor (See Ladder Diagram LD, p. 199) is used for graphic ladder
programming according to IEC 1131-3.

Contacts and coils are connected to the Ladder Diagram in LD sections using
signals (variables).

The size of a FBD section is 23 lines and 30 columns.

Furthermore, the elementary functions and Function Blocks (EFBs), which are
named in the FBD editor, the Derived Function Blocks (DFBs) and User Defined
Function Blocks (UDFBs) may also be bound in the ladder diagram (see FBD editor,
p. 10).

The structure of a LD section corresponds to a rung for relay switching. The left
power rail is located on its left-hand side. This left power rail corresponds to the
phase (L ladder) of a rung. With LD programming, in the same way as in a rung, only
the LD objects (contacts, coils) which are linked to a power supply, that is to say
connected with the left power rail, are "processed". The right power rail, which
corresponds to the neutral ladder, is not shown optically. However, all coils and EFB
outputs are linked with it internally and this creates a power flow.

General description of Concept

840 USE 503 00 October 2002 11

SFC editor The SFC editor (See Sequence language SFC, p. 233) is used to graphically
program an IEC 1131-3 compatible sequential control.

The SFC elements are connected in a SFC section to one of the sequential controls
corresponding to the task setting. The size of a SFC section is 32 lines and 200 lines.

The following sequential control programming objects are available in Concept.
l Step (including actions and action sections)
l Transition (including transition section)
l Alternative branch and merge
l Parallel branch and merge
l Jump
l Connection

Simple diagnostics monitoring functions are already integrated in the steps.

IL editor The IL editor (See Instruction list IL, p. 279) is used for programming IEC 1131-3
compatible instruction lists.

Existing IL instructions, elementary functions and Elementary Function Blocks
(EFBs), and Derived Function Blocks (DFBs) are written in series in text form in IL
sections from operators (commands) and operands (signals, variables).

When the program is entered, all the standard Windows services and some
additional commands for text-processing are available. The size of an IL section is
64 Kbyte maximum.

The following instruction list programming operators are available in Concept:
l Logic (AND, OR etc.)
l Arithmetic (ADD, SUB, MUL, DIV, …)
l Comparative (EQ, GT, LT, …)
l Jumps (JMP, … conditional/unconditional)
l EFB call (CAL , … conditional/unconditional)

IL programming is done in text form. When text is entered, all the standard Windows
services for text-processing are available. The IL editor also contains some further
commands for text-processing.

A spell check is performed immediately after text has been entered (instructions, key
words, separators), highlighting errors with a colored outline.

General description of Concept

12 840 USE 503 00 October 2002

ST editor The ST editor (See Structured text ST, p. 341) is used for programming IEC 1131-3
structured text.

Existing ST statements, elementary functions and Elementary Function Blocks
(EFBs), and Derived Function Blocks (DFBs) are written in text form in IL sections
by printing (operator lists) and operands (signals, variables).

When the program is entered, all the standard Windows services and some
additional commands for text-processing are available. The size of a ST section is
64 Kbyte maximum.

The following structured text programming statements and operators are available
in Concept:
l conditional/unconditional statement execution (IF, ELSIF, ELSE, …)
l conditional/unconditional loop execution (WHILE, REPEAT)
l Mathematical, comparative, and logic operators
l conditional/unconditional EFB call

ST programming is done in text form. When text is entered, all the standard
Windows services for text-processing are available. The ST editor also contains
some further commands for text-processing.

A spell check is performed immediately after text has been entered (instructions, key
words, separators), highlighting errors with a colored outline.

LL984 editor Using the Modsoft orientated LL984-Editor (See Ladder Logic 984, p. 387) (Ladder
Diagram 984), instructions, contacts, coils and signals (variables) are connected to
a ladder diagram. Instructions, contacts, coils and variables may be commented on.

The structure of a LL984 section corresponds to a rung for relay switching. The left
power rail is located on its left-hand side, but it is not visually displayed. This left
power rail corresponds to the phase (L ladder) of a rung. With LL984 programming,
in the same way as in a rung, only the LL984 objects (instructions, contacts, coils)
connected to a power supply, i.e. connected to the left power rail, are "processed".
The right power rail, which corresponds to the neutral ladder is not visually displayed
either. However, all coils and instruction outputs are linked with it internally and this
creates a power flow.

Concept has various predefined instructions for ladder programming using LL984.
These may be found in the block library LL984. Additional instructions for special
applications are available as loadables and may be loaded at a later time.

General description of Concept

840 USE 503 00 October 2002 13

Variable Editor The Variable Editor (See Variables editor, p. 479) is used to declare and comment
on all necessary symbolic signal names (variables). Only declared variables may be
used in Concept programs.

A data type must be assigned to each symbolic signal name! If this variable is
assigned a reference address, a Located variable (without reference address =
Unlocated variable) is received. An initial value may also be provided for each
variable, which will be transferred into the PLC during the first load.

Data type editor
(DDT editor)

The Data type editor (See Derived data types, p. 499) may be used to define specific
Derived Data Types (Derived Data Type = DDT).

Derived Data Types combine several Elementary data types (BOOL, WORD, …) in
one data record. It is not only the same data types which may be combined as
ARRAY, but also various data types may be combined as STRUCT. In Concept, a
number of Derived Data Types are already available, which for instance may be
used for DFBs.

DDTs appear in DFBs or EFBs only as a connection, i.e. for instance in FBD a
variable input is only necessary in the block. It is thus recommended that frequently
recurring groups of elementary data types (and also DDTs) be defined as DDTs, in
order to improve accessibility of an application.

The definition appears in text form, and all the standard Windows services and some
additional commands for text-processing are available. The size of a data type file
is 64 Kbyte maximum.

Reference data
editor

The Reference data editor (See Reference data editor, p. 531) may be used in
online mode to display the variable value, to force variables and to set variables.
There is also the possibility of separating variables from the process. Inputs may be
saved in a data file and be reused.

General description of Concept

14 840 USE 503 00 October 2002

Online functions

Available online
functions

After the programming device has been linked to the PLC, a range of online Startup
and maintenance functions become available.
l the program on the programming device is compared with the program on the

PLC
l the PLC can be started and stopped
l Object information is displayed
l Programs can be loaded, sections can be changed online and loaded
l Variable values can be entered online
l Animation mode shows the program with its current signal states

Operating and
monitoring

Declaration of special operating and monitoring variables is not necessary in
Concept. The variables to be visualized can be identified as such in the Variable
Editor and then be exported into a ModLink or FactoryLink configuration data file.
This data file can be used for visualizing.

Communication

Description Communication between the PLC and another Modbus-, Modbus Plus-, SY/MAX-
Ethernet or TCIP/IP Ethernet node is projected using IEC languages (FBD, LD,
SFC, ST, IL) with the EFBs from the block library COMM. The instruction MSTR from
the block library may be use

A peer to peer transfer of register contents is possible using the peer cop,
independent of these blocks/instructions.

Communication is projected between the PLC and the decentralized I/O via the
INTERBUS by simply entering the NOA module in the component list and loading a
loadable (ULEX).

Communication is projected between the programming device and a PLC via
Ethernet by simply entering and parametering the appropriate couple module in the
component list.

General description of Concept

840 USE 503 00 October 2002 15

Secure Application

At a Glance In several areas of industry, the need for security demands regulated access to
PLCs, recording program changes and archiving those recordings. Following a
standardized procedure ensure that records may not be falsified. To enable these
requirements, new features have been implemented in Concept that ensure secure
application. To guarantee that all of these parameters are defined, the user can
activate the Secure Application check box in the Project → Project Properties
dialog. Concept will then ensure that all of these parameters are set and that their
contents remain valid. The project is then indicated as being a secure application,
and this information is included in the information that is downloaded to the PLC.

Secure
Application

The secure application is defined in the Project → Project Properties dialog by
activating the Secure Application check box. These settings are then exported,
imported, read and loaded to the PLC.

The log file is stored in the Concept directory and has the name of the current date
(YEARMONTHDAY.ENC, e.g. 20020723.ENC). The path of the log file can be
defined in dialog Common Preferences. If no path is defined then Concept uses
the default log path (Concept directory, e.g. C:\CONCEPT).
Among other things, logging write-access to the PLC can record the following data:
l Section name
l EFB/DFB Instance name, FB Type name
l Pin Name
l [Variable name] [Literal] [Address]
l Old value
l New value
l User name (if the Concept (Login) password is activated in Concept Security)
l Data and Time (see alsoAddress format in LOG file [Logging], p. 1036)

Note: When the secure application is activated, a NOT EQUAL status is generated
and required reloading to the PLC. Unchecking the check box also creates a NOT
EQUAL status so that loading is again required as well. If Concept is connected to
a PLC that is already defined with the "Secure Application" setting, the setting is
automatically accepted in Concept in case of upload the controller.

General description of Concept

16 840 USE 503 00 October 2002

Requirements The secure application can only be activated if the following prerequisites are met:
l can only be used with 140 CPU 434 12A or 140 CPU 534 14A
l at least one IEC section (if no IEC section exists then the download is aborted.)
l Offline mode (Online → Disconnect...)
l Supervisor Rights (see Concept under Help → About... → Current User:)

Activation
Combination for
Secure
Application

Various Activation Combinations for Secure Application:

Reading the
Encrypted Log
File

To read the encrypted log file, the View tool is opened automatically in the View
Logfile dialog.

"Secure
Application"
activated in
Concept

"Secure
Application"
loaded to PLC

Reaction to connection with the PLC

Not activated Not activated Normal operation without secure application

Not activated Activated When uploading, the Secure Application
check box is activated in Concept and
encrypted logging is activated.

Activated Not activated Download required because the status is NOT
EQUAL.

Activated Activated Normal operation with secure application (e.g.
encrypted logging).

Note: If an encrypted log file has been improperly modified in any way, the log is
decoded as much as is possible, and the lines that have been modified will remain
unreadable. The first line will contain the message: "This log file has been
modified".

General description of Concept

840 USE 503 00 October 2002 17

Utility program

At a Glance In addition to Concept the following range of utility programs are available:
l Concept DFB
l Concept EFB
l Concept SIM (16 bit)
l Concept PLCSIM32 (32 bit)
l Concept Security
l Concept WinLoader
l Concept Converter
l Concept ModConnect

Concept DFB Concept DFB is used to create DFBs (Derived Function Blocks) (See DFBs (Derived
Function Blocks), p. 415) and Macros (See Macros, p. 455).

DFBs (Derived Function Blocks)
DFBs can be used for setting both the structure and the hierarchy of a program. In
programming terms, a DFB represents a subroutine.

DFBs can be created in the programming languages FBD, LD, IL, and ST. In
Concept, DFBs can be called up in any programming language, regardless of the
programming language they were created in. One or several existing DFBs can be
called up within one DFB, with the called-up DFBs themselves able to call up one or
several DFBs.

Macros
Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).
Macros have the following properties:
l Macros can only be created in the programming language FBD.
l Macros only contain one section.
l Macros can contain a section of any complexity.
l In programming terms, there is no difference between an instanced macro, i.e. a

macro inserted into a section and a conventionally created section.
l It is possible to call up DFBs in a macro.
l It is possible to declare macro-specific variables for the macro.
l It is possible to use data structures specific to the macro
l Automatic transfer of the variables declared in the macro.
l Initial values are possible for the macro variables.
l It is possible to instance a macro many times in the entire program with different

variables.
l Section names, variable names and data structure names can contain the

character ~ as an exchange marking.

General description of Concept

18 840 USE 503 00 October 2002

Concept EFB The optional tool Concept EFB can be used to generate, in C++ programming
language, your own application specific Functions and Function Blocks (EFBs) and
to integrate them in the form of libraries with groups in your version of Concept.

The operating rules for these user-defined blocks (UDFBs) are identical to those for
standard EFBs.

It is, for instance, recommended that complex program parts with a high number of
calls and program parts, whose solution is to remain hidden from the user, e.g.
special technology objects etc. be generated using Concept EFB.

Concept SIM
(16 bit)

The 16 bit simulator Concept SIM (See Simulating a PLC (16-bit simulator), p. 679)
is available for simulating a PLC, i.e. to test your user program online without
hardware. Concept SIM simulates a coupled PLC via Modbus Plus.

Concept PLCSIM
(32 bit)

The 32 bit simulator Concept PLCSIM32 (See Simulating a PLC (32-bit simulator),
p. 682) is available for simulating a PLC, i.e. to test your user program online without
hardware. Concept PLCSIM32 simulates a PLC coupled via TCP/IP, where the
signal states of the I/O modules can also be simulated. Up to 5 programming
devices can be coupled to the simulated PLC at the same time.

Concept Security Concept Security (See Concept Security, p. 691) can be used to assign access.
Access signifies that the function of Concept and its utility programs is limited
depending on the user.

The access defined for one user is applicable to all Concept installation projects. A
maximum of 128 users may be defined.

Note: Concept EFB is not included as part of the Concept package and may be
ordered in addition.

Note: The simulator is only available for the IEC languages (FBD, SFC, LD, IL and
ST).

Note: The simulator is only available for the IEC languages (FBD, SFC, LD, IL and
ST).

General description of Concept

840 USE 503 00 October 2002 19

Concept
Converter

Projects, DFBs, macros, and data structures (Derived Data Types), created for an
earlier version of Concept, can be converted without hassle to work in the current
version of concept in the Concept Converter (See Convert Projects/DFBs/Macros,
p. 911).

Concept
EXECLoader

The Concept EXECLoader can be used to load Exec data files onto the PLC.

Concept
ModConnect

Concept-ModConnect (See Concept ModConnect, p. 915) can be used to extend
the configurator for new (specific) I/O modules.

General description of Concept

20 840 USE 503 00 October 2002

840 USE 503 00 October 2002 21

2
New Performance Attributes of
Concept 2.6 in Comparison with
Concept 2.5

New Performance Attributes

22 840 USE 503 00 October 2002

New Performance Attributes of Concept 2.6 Compared with Concept 2.5

Highlights New general performance attributes:
l Interrupt sections
l Global variables
l Security features

New EFBs New EFBs in the SYSTEM library:

New EFBs in the COMM library:

New EFBs Description

I_LOCK Disable all interrupt sections

I_UNLOCK Enable all interrupt sections

I_MOVE Interrupt protected assignment

ISECT_OFF Disable specific interrupt sections

ISECT_ON Unlock a specific interrupt section

ISECT_STAT Interrupt section status

PRJ_VERS States project name and version

GET_IEC_INF Read IEC status flags

RES_IEC_INF Reset IEC status flags

New EFBs Description

PORTSTAT States Modbus Port status

New Performance Attributes

840 USE 503 00 October 2002 23

Start Concept New features when starting Concept:

Animation 12 different color schemes for animation in the FBD, IL, ST, SFC and LD editors:

Reference data
editor

New feature in the reference data editor:

New performance attributes Description

Automatic connection to every
desired PLC

Startup using the Concept Project Symbol creates
automatic connection to any desired PLC. This
connection is defined by the Command line parameter
(See Automatic Connection with Command Line
Parameters (Modbus, Modbus +, TCP/IP), p. 1068).

When starting Concept using the
CCLaunch tool, a connection is
made to every desired PLC

In large networks, a topology file is created and is then
used in the CCLaunch tool. You can use this to create a
complete MB+ Routing path (See Automatic Connection
with the CCLaunch Tool (Modbus Plus), p. 1071), which
then creates a connection to the PLC automatically.

Displays list of previously opened
Projects/DFBs

When starting Concept a list of previously opened
Projects/DFBs (max. 4) is displayed in the File main
menu.

Archive content display When unpacking an archived project, all archived files
are shown first.

New performance attributes Description

CONCEPT.INI:
[Colors]

AnimationColors= (0-12)

Defines the color scheme for online animation in all
editors.

New performance attributes Description

Address format IEC (QW0000X) The IEC (QW0000X) address format can be displayed.

New Performance Attributes

24 840 USE 503 00 October 2002

Online functions New online features:

Message window New performance attributes in the Windows menu:

New CPU New CPU:

New Module New Quantum module:

New Momentum module:

New performance attributes Description

Quantum password protection Quantum PLC is write protected by entering a
password.

Event sections Online diagnostics are displayed for Interrupt sections.

Event viewer Error descriptions can be defined in a project specific INI
file (See INI Settings for the Event Viewer [Online
Events], p. 1039) that should appear in the event viewer
(Online → Online events...).

New performance attributes Description

Save messages After messages are displayed they can be saved to file
using the Save Messages... (main menu Window)
menu command.

PLC family Description

Atrium CPU 180-CCO-241-11

Module Description

140-NOE-771-01 Ethernet module without Hot Standby features.

140-NOE-771-11 Ethernet module (Factory Cast) without Hot Standby
features.

140-CPS-114-20 Power supply module

140-CPS-124-20 Power supply module

140-NOG-111-00 1/SFB Master module

140-NWM-100 00 Ethernet module (Factory Cast HMI)

Module Description

170-ANR-120-91 Analog/Digital Input/Output module

New Performance Attributes

840 USE 503 00 October 2002 25

Project Browser New features in the Project browser:

Analyze section New features when analyzing sections:

DFB New features for DFB programming:

Data types New features for DFB programming:

New performance attributes Description

Display interrupt sections When I/O event sections and Timer event sections are
used, they are displayed in the Project browser
structure.

Show detailed view The Project browser window is split vertically, and a
second window displays the substructure (e.g. DFBs,
Transitions sections, etc.) of the selected elements in a
structure tree.

New performance attributes Description

Analyze interrupt sections There is now an additional analysis for Interrupt
sections.

Analyzing global variables in DFBs There is an analysis for global variables in DFBs.

New performance attributes Description

Located variables Located variables are permitted in DFBs when the
option in the IEC Extensions dialog box is enabled.
Global variables can be created throughout the program
with located variables in DFBs.

New performance attributes Description

View comments for data structure
elements

Comments for data type components defined in data
type files (*.ddt, *.dty) are displayed in:
l Editors status line
l Variables editor for the definition of initial values
l Inspect Animation field

Extended Data Type Definition
(larger than 64 Kbytes), p. 507

The 64 kb restriction is not imposed for local data type
definition with the introduction of unlocated Include files.

New Performance Attributes

26 840 USE 503 00 October 2002

Configuration New features in the Configurator:

Logging (*.LOG,
*.ENC)

New features for DFB logging:

Secure
Application

New features for a secured application:

New performance attributes Description

1/SFB Coupler configuration Required to provide support for the A500/A350 I/O
module. Extended I/O range up to 160 input/output
words.

Quantum security parameter The following parameters can be defined in the new
dialog box (submenu of the Config. Extensions):
l Secure data area
l Network write restrictions
l Enable the Auto-Logout option

Interbus configuration with Atrium The Interbus configuration is done with Atrium CPUs
180 CCO 241 01 (= 1 INTERBUS) and 180 CCO 241 11
(= 2 INTERBUS).

New performance attributes Description

Additional contents When logging PLC write access, modifications made to
variable and literal values are displayed in addition.

New Date/Time format By activating the check box Universal Date Format in
dialog Common Preferences (setting also affects the
CONCEPT.INI file) the format can be changed. The
month is then stated within Concept with 3 characters
and in English. Example: 24-Dec-2002 14:46:24

Encrypting the log By activating the check box Encrypt Logfile in dialog
Common Preferences (or indirectly using the check
box Secure Application in dialog Project Properties)
login the write access to the PLC will be encrypted. The
encrypted file contains the file extension *.ENC.

New performance attributes Description

Application backup If you activate the check box in the Project → Project
Properties dialog box, program modifications are
automatically logged and encrypted in a *.ENC file.
These settings can be loaded using Export/Import and
transferred to the PLC.

New Performance Attributes

840 USE 503 00 October 2002 27

New Tools New Tools for Concept:

New Tool Description

CCLaunch This tool is used for making an automatic connection
(See Automatic Connection with the CCLaunch Tool
(Modbus Plus), p. 1071) with a PLC in a large network.

View Tool This tool allows you to view encoded LOG files (*.ENC).
It is started automatically with menu instruction View
Logfile if log encrypting has been activated.

New Performance Attributes

28 840 USE 503 00 October 2002

840 USE 503 00 October 2002 29

3
Project structure

At a Glance

Overview This chapter describes the structure of projects in Concept.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Project Structure and Processing 30

Programs 35

Sections 40

Configuration data 46

Project structure

30 840 USE 503 00 October 2002

Project Structure and Processing

Structure of a
project

The creation of a PLC program with Concept is carried out hierarchically in a project
using PLC configuration (See Configuration data, p. 46) and Program (See
Programs, p. 35). The program is divided into section groups and Sections (See
Sections, p. 40).

The PLC configuration and required program parts can be created in any order
within a project (top down or bottom up).

Structure of a project:

Project

Section group

Section group

Program

cycl. cycl. HW HW Timer

(cyclic)

cycl.
Sect.

cycl.
Sect. Sect. Sect.

Timer
Sect. Sect. Sect. Sect.

Section group
I/O event

Section group
Timer event

Configuration

Project structure

840 USE 503 00 October 2002 31

Processing an
IEC/LL984
project

This table describes the processing of a LL984/IEC project (Quantum):

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - 4 In these stages, the logic for the LL984 sections is executed by the logic
processor in segments 1-3 (corresponding to the settings in the Segment
scheduler (See Segment manager, p. 86)).
At the same time the I/O processor transfers the output values calculated in the
respective previous segment to the hardware and the hardware reads the input
values required for the next respective segment.

n In this step, the logic processor in segment n runs the LL984 sections logic.
At the same time the I/O processor transfers the output values calculated in the
previous segment to the hardware and the hardware reads the input values
required for segment 1.
Note: The output values calculated in this segment are only executed on next
execution of stage 2, i.e. after the IEC logic and the overhead have been
processed. Therefore no time critical logic should be executed in this segment.

n+1 - m The logic processor runs the IEC sections logic in these steps.
It then "jumps back" to stage 1.

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 Executing LL984 segment 1 Writing outputs calculated in segment n

Reading inputs required in segment 2

3 Executing LL984 segment 2 Writing outputs calculated in segment 1

Reading inputs required in segment 3

4 Executing LL984 segment 3 Writing outputs calculated in segment 2

Reading inputs required in segment 4

...

n Executing LL984 segment n (n =< 32) Writing outputs calculated in segment n-1

Reading inputs required in segment 1

n+1 Executing IEC section 1 -

n+2 Executing IEC section 2 -

n+3 Executing IEC section 3 -

.. -

m Executing IEC section n (n =< 1600)
and back to stage 1

-

Project structure

32 840 USE 503 00 October 2002

Note: No hardware signals are read or written. The values calculated/read in
stages 2 to n are used exclusively. The outputs calculated in these stages are
transferred in stages 2 to n (corresponding to the settings in the segment
scheduler).

Processing a
LL984 project

This table describes the processing of a LL984 project (Quantum):

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - 4 In these stages, the logic for the LL984 sections is executed by the logic
processor in segments 1-3 (corresponding to the settings in the Segment
scheduler (See Segment manager, p. 86)).
At the same time the I/O processor transfers the output values calculated in the
respective previous segment to the hardware and the hardware reads the input
values required for the next respective segment.

n In this step, the logic processor in segment n runs the LL984 sections logic.
At the same time the I/O processor transfers the output values calculated in the
previous segment to the hardware and the hardware reads the input values
required for segment 1.
It then "jumps back" to stage 1.
Note: The output values calculated in this segment are only processed the next
time stage 2 is completed, i.e. after the overhead has been processed. Therefore
no time critical logic should be executed in this segment.

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 Executing LL984 segment 1 Writing outputs calculated in segment n

Reading inputs required in segment 2

3 Executing LL984 segment 2 Writing outputs calculated in segment 1

Reading inputs required in segment 3

4 Executing LL984 segment 3 Writing outputs calculated in segment 2

Reading inputs required in segment 4

...

n Executing LL984 segment n (n =< 32)
and back to stage 1

Writing outputs calculated in segment n-1

Reading inputs required in segment 1

Project structure

840 USE 503 00 October 2002 33

Processing an
IEC project

This table describes the processing of an IEC project (Quantum):

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - n The hardware signals from the allocated modules respective segments are
written and read by the I/O processor in these stages (corresponding to the
settings in the Segment scheduler (See Segment manager, p. 86)).

n+1 - m The logic processor runs the IEC sections logic in these steps.
It then "Returns" to stage 1.
Note: No hardware signals are read or written. The values read in stage 2 to n
are used exclusively. The outputs calculated in these stages are transferred in
stages 2 to n (corresponding to the settings in the Segment manager).

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 - Writing outputs allocated to segment 1

Reading inputs allocated to segment 1

3 - Writing outputs allocated to segment 2

Reading inputs allocated to segment 2

4 - Writing outputs allocated to segment 3

Reading inputs allocated to segment 3

...

n - Writing outputs allocated to segment n
(n =< 32)

Reading inputs allocated to segment n
(n =< 32)

n+1 Executing IEC section 1 -

n+2 Executing IEC section 2 -

n+3 Executing IEC section 3 -

.. -

m Executing IEC section n (n =< 1600)
and back to stage 1

-

Project structure

34 840 USE 503 00 October 2002

Processing an
IEC project

This table describes the processing of an IEC project (Quantum):

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 - Writing outputs allocated to segment 1

Reading inputs allocated to segment 1

3 - Writing outputs allocated to segment 2

Reading inputs allocated to segment 2

4 - Writing outputs allocated to segment 3

Reading inputs allocated to segment 3

HE1 1. I/O event section, spontaneous
execution, when Hardware Interrupt
occurs

-

HE2 2. I/O event section, spontaneous
execution, when Hardware Interrupt
occurs

-

...

HE64 64. (last) I/O event section,
spontaneous execution, when
Hardware Interrupt occurs

-

TE1 1. Timer event section, only executed
when time interrupt occurs

-

TE2 2. Timer event section, only executed
when time interrupt occurs

-

...

TE16 16. Timer event section, only executed
when time interrupt occurs

-

...

n - Writing outputs allocated to segment n
(n =< 32)

Reading inputs allocated to segment n
(n =< 32)

n+1 Executing IEC section 1 (cyclically) -

n+2 Executing IEC section 2 (cyclically) -

n+3 Executing IEC section 3 (cyclically) -

.. -

m Executing IEC section n (n =< 1600)
and return to stage 1

-

Project structure

840 USE 503 00 October 2002 35

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - n The hardware signals from the allocated modules respective segments are
written and read by the I/O processor in these stages (corresponding to the
settings in the Segment scheduler (See Segment manager, p. 86)).

n+1 - m The logic processor processes the IEC sections logic in these steps.
It then "Returns" to stage 1.
Note: No hardware signals are read or written. The values read in stage 2 to n
are used exclusively. The outputs calculated in these stages are transferred in
stages 2 to n (corresponding to the settings in the Segment scheduler).

HE1 - HE64 If a hardware interrupt signal specially assigned to a section changes
its value according to its parameter configuration, the cyclical processing and if
necessary the processing of a Timer event section is immediately stopped and
returned to the I/O event section. Once all event sections (and Timer event
sections) are processed, the cyclical processing is continued at the point where
the interrupt occurred. (See also chapter "I/O Event Sections, p. 1060")

TE1 - TE16 When a specially configured Timer interrupt signal for a section occurs,
cyclical processing is immediately stopped and jumps to the Timer event section.
Once Timer event sections are processed, the cyclical processing is continued at
the point where the interrupt occurred as long as there are no further instructions
for Timer event sections. (See also chapter "Timer Event Sections, p. 1047")

Programs

Structure of a
program

A program consists of one or more Sections (See Sections, p. 40) or section groups.
Section groups can contain sections and other section groups. Section groups can
be created exclusively and filled using Project → Project browser (See Project
Browser, p. 491). Sections describe the entire systems mode of operating.

Moreover the variables, constants, literals and direct addresses are managed within
the program.

Project structure

36 840 USE 503 00 October 2002

Variables Variables are used to exchange data within a section, between several sections and
between the program and the PLC.

Variables are declared using the menu command Project → Variable declaration.
If the variable with this function is assigned an address, it is called a Located
variable. If the variable has no address assigned to it, it is called an Unlocated
variable. If the variable is assigned with a derived data type, it is called a Multi-
element variable.

There are also constants and literals.

The following table provides an overview of the various types of variables:

Variable type Description

Located variables Located variables are allocated a State RAM address (reference
address 0x, 1x, 3x,4x). The value of this variable is saved in the
State RAM and can be changed online using the Reference data
editor. These variables can be addressed using their symbolic
names or using their reference address.

All PLC inputs and outputs are connected to the State RAM. The
program can only access peripheral signals attached to the PLC
via located variables. Access from external pages via Modbus or
Modbus Plus interfaces of the PLC, e.g. from visualization
systems can be made using located variables.

Unlocated variables Unlocated variables are not assigned a State RAM addresses.
They therefore do not occupy any State RAM addresses. The
value of this variable is saved internally in the system and can be
changed using the Reference data editor. These variables are
only addressed using their symbolic names.

Signals requiring no peripheral access, e.g. intermediate results,
system tags etc, should primarily be declared as unlocated
variables.

Multi element variables A variable which is assigned a Derived data type.

A distinction is made here between Structured variables and Array
variables.

Structured variables Variables to which a Derived data type defined using a STRUCT
(structure) is assigned.

A structure is a collection of data elements with generally different
data types (Elementary data types and/or Derived data types).

Project structure

840 USE 503 00 October 2002 37

Variable start
behavior

In start behavior of PLCs there is a distinction between cold restarts and warm
restarts:
l Cold restart

Following a cold restart (loading the program with Online → Download) all
variables (irrespective of type) are set to "0" or their initial value if available.

l Warm restart
In a warm restart (stopping and starting the program or Online → Download
changes) different start behaviors are valid for located variables/direct
addresses and unlocated variables:
l Located variables/direct addresses

In a warm restart all 0x, 1x and 3x registers are set to "0" or their initial value
if available.
The buffered coils are an exception to this. Buffered coils retain their current
value (storage behavior).
4x registers retain their current value (storage behavior).

l Unlocated variables
In a warm restart all unlocated variables retain their current value (storing
behavior).

This varying behavior in a warm restart leads to peculiarities in the warm restart
behavior of set and reset functions.
l Set and Reset in LD and IL

Warm restart behavior is dependent on the variable type used (storage behavior
in use of unlocated variables; non storage behavior in use of located variables/
direct addresses)

l SR and RS Function Blocks in FBD, LD, IL and ST
These function blocks work with internal unlocated variables and therefore
always have a storage behavior.

Constant
variables

Constants are unlocated variables assigned a value, which cannot be modified by
the logic program (read only).

Array variables A variable which is assigned a defined data type with the key word
ARRAY.

An array is a collection of data elements with the same data type.

Variable type Description

Project structure

38 840 USE 503 00 October 2002

Literals (values) Literals are used to describe FFB inputs, and transition conditions etc using direct
values. These values cannot be overwritten by the program logic (read only).

The values of literals can be changed online.

There are two different types of literal; generic and standardized.
The following table provides an overview of the various types of literals:

Literal Description

Generic literals If the literal’s data type is not relevant, simply specify the value for
the literal. In this case, Concept automatically assigns a suitable
data type to the literal.

Standardized literals If you would like to manually determine a literal’s data type, this may
be done using the following construction: "Data type name"#"Literal
value"
For example
INT#15 (Data type: Integer, value: 15),
BYTE#00001111 (Data type: Byte, value: 00001111)
REAL#23.0 (Data type: Real, value: 23.0)

To assign the data type REAL the value may also be specified in the
following manner: 23.0.
Entering a comma will automatically assign the data type REAL.

Project structure

840 USE 503 00 October 2002 39

Direct addresses Direct addresses are memory ranges in the PLC. They are located in the State RAM
and can be assigned Input/Output modules.

Direct addresses can be entered or displayed in various formats. The display format
is specified in the dialog box Options → Preferences → Common. Setting the
display format has no impact on the entry format, i.e. direct addresses can be
entered in any format.

The following address formats are possible:
l Standard format (400001)

The five character address comes directly after the first digit (the Reference).
l Separator format (4:00001)

The first digit (the Reference) is separated from the following five-character
address by a colon (:).

l Compact format (4:1)
The first digit (the Reference) is separated from the following address by a colon
(:), and the leading zeros of the address are not given.

l IEC format (QW1)
In first place, there is an IEC identifier, followed by the five-character address.
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

The values of direct address can be modified online using the Reference data editor
(See Reference data editor, p. 531).

Start behavior of
digital outputs

Outputs that are assigned 0x registers are deleted during PLC startup. Digital
outputs that assigned 4x registers keep their current value when the PLC is stopped
or started.

Project structure

40 840 USE 503 00 October 2002

Sections

Introduction A program consists of one or more sections. A section describes the mode of
functioning of a systems technological unit (for example a motor).

Each section has its own document window in Concept. For overview purposes it is
useful to divide a very large section into several small ones. The scroll bar is used
to move within a section.

The page break can be made visible for each section, so that the page format can
be monitored when programming. In this way, a readable printout of the section is
assured.

Section types There are three different types of sections in Concept provided for Quantum
processing.
l Cyclical section are executed in every program cycle. The reaction time

depends on the cycle time and is a minimum of one cycle and maximum of two
cycles.

l I/O event sections are not executed cyclically, but are started and processed
spontaneously when a specially assigned Interrupt signal value changes state
(corresponding to the setting in the Configurator and Section properties).
The 140-HLI-340-00 module provides 16 Interrupt inputs. The local backplane
has space for a maximum of 4 HLI modules.
The reaction time to an I/O event generally depends on the process duration of
the EFBs to be processed in the section as well as the transition times.

l Timer event sections are started and processed in precise user defined
intervals.
The time intervals are defined in multiples of 1ms and a Phase in the Section
properties for Timer Event Sections dialog box.
The reaction time is independent of the cycle time. Reactions to outputs are also
carried out in defined time intervals.

Maximum
number of
sections

There can be up to a maximum of 1,600 sections per program.

Programming
languages

Sections can be programmed using the IEC programming languages FBD (Function
Block Diagram), LD (Ladder Diagram), SFC (Sequential Control), IL (Instruction
List), or ST (Structured Text), or in the LL984 programming language (Ladder
Logic), which resembles Modsoft. Only one of the stated programming languages is
permitted to be used within a section.

Project structure

840 USE 503 00 October 2002 41

Exchanging
values

Values are exchanged within sections via links, variables, or direct addresses.
Values are exchanged between different sections via variables or direct addresses.

Section
execution order

The LL984 sections are the first to be executed. The LL984 section vertical
sequence can be defined via the Project → Configurator → Configure →
Segment scheduler... dialog box. Once the entire LL984 section has been
processed, the IEC sections are then processed (FBD, SFC, LD, IL, ST). The
execution order can be determined using either the Project → Execution order...
or the Project browser (See Project Browser, p. 491) dialog box.

Printing sections Sections are divided into pages when printing out. The amount of information on
these pages is dependent on the settings in the menu File → Print. Page division
can be displayed using the menu option View → Page breaks.

Section variable A Multi-element variable is automatically generated for each IEC section (FBD, SFC,
LD, IL, and ST) and has the same name as the section.

This variable is SECT_CTRL data and has two elements:
l The "disable" BOOL data type element for disabling sections.
l The "hsbyState" BYTE data type element for displaying the Hot Standby status

of sections.
If the smallest bit of this element is set, the data from this section is transferred/
received, see the Hot Standby User’s manual. (This bit corresponds to the
exclamation mark in the project browser.)

Project structure

42 840 USE 503 00 October 2002

Disabling
sections

The component "disable" can be used to enable/disable the section variable If the
multi element address is not used or if the value 0 has been assigned to "disable",
the corresponding section is executed. If "disable" is assigned the value "1", the
corresponding section will not be executed. By using this variable, the execution of
sections can be controlled according to events.

Disabling
Interrupt
Sections

A specific Interrupt section can be disabled using the ISECT_OFF block. It can be
enabled again using the ISECT_ON block. The section names are provided by the
SECT_CTRL control variable.
The I_LOCK block can disable all interrupt sections. They can be enabled again
using the I_UNLOCK block.

Note: If a disabled section is animated, the DISABLED status is displayed in the
status bar.

CAUTION

Risk of unwanted process states.

Disabling a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior
cycle, this status remains even after the section is disabled. The status
of these outputs cannot be modified.

Failure to follow this precaution can result in injury or equipment
damage.

Note: A possible interrupt on an interrupt section has no effect.

Project structure

840 USE 503 00 October 2002 43

Lock section UN-
CONDITIONAL-
LY (possibility 1)

The procedure for locking a section unconditionally is as follows:

Step Action

1 Using Online → Reference data editor open the Reference data editor (See
Reference data editor, p. 531).

2 By double clicking on a line number, open the Lookup variables dialog box.

3 From the area Data type first choose the option Structured and then from this
list SECT_CTRL.
Result: The names of all sections are displayed.

4 Now select the names of the section to be locked.

5 Use the command button Components... to select the ANY type components
dialog box.

6 Select the line disable: BOOL and confirm with OK.

7 If the following has not been performed yet:
Create a connection between the PLC and the programming device and load
your program onto the PLC.

8 Change the entry in the column Value to 1 (TRUE) to lock the section or 0
(FALSE) to enable the section.

9 Using Online → Animation activate the animation if it is inactive.
Result: The section is disabled or enabled according to the value.

Note: Locking a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior cycle,
this status remains even after the section has been disabled. The status of these
outputs cannot be modified.

CAUTION

Risk of unwanted process states.

The entry in the column Value remains even after the reference data
editor has been closed (even if the entries are not saved), or in other
words, the section remains disabled and must be explicitly re-enabled
via the reference data editor (value = 0).

Failure to follow this precaution can result in injury or equipment
damage.

Project structure

44 840 USE 503 00 October 2002

Lock section UN-
CONDITIONAL-
LY (possibility 2)

The procedure for locking a section unconditionally is as follows:

Step Action

1 Using Project → Project browser open the Project browser (See Project
Browser, p. 491).

2 From Online → Connect... create a connection between the programming
device and the PLC.

3 From Online → Download... (if the program is in NOT EQUALmode) or Online
→ Download changes (if in MODIFIED mode) restore the consistency between
the programming device and the PLC.

4 Select the section to be locked from the project browser.

5 Activate the context menu for sections using the right mouse button, and activate
Animate enable state.

6 Change the enable status using the menu command Switch enable state from
the context menu (right mouse button) of the selected section.

Note: Sections may only be disabled or enabled via the Project browser, if they
have not already been disabled/enabled via another Section (See Locking a
section CONDITIONALLY, p. 45) or via the Reference data editor (See Lock
section UNCONDITIONALLY (possibility 1), p. 43).

Result: The section is locked.

Note: Locking a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior cycle,
this status remains even after the section has been disabled. The status of these
outputs cannot be modified.

Project structure

840 USE 503 00 October 2002 45

Locking a
section
CONDITIONAL-
LY

The procedure for locking a section conditionally (program dependent) is as follows:

Step Action

1 Create the logic according to the section to be locked, for example in an FBD
section.
When doing this, please note that the logic must carry a BOOL data "output" and
that the section to be disabled will be disabled at logic "1".

Note: The section containing a logic for disabling/enabling other sections should
not be disabled.

2 By double clicking on your logic’s "output", open the Connect FFB dialog box.

3 Use the command button Lookup... to open the Lookup Variable dialog box.

4 From the area Data type first choose the option Structured and then from this
list SECT_CTRL.
Reaction: The names of all sections are displayed.

5 By double clicking, now select the names of the section to be locked.

6 Select the line disable: BOOL and confirm with OK.
Result: The multi-element variable from the section to be locked (Section
name.disable) now creates the "output" of the logic.

7 From Project → Execution order... open the Section Execution Order dialog
box.

8 Using the command buttons, ensure that the section containing the logic for
locking is executed before the section to be locking is executed.

9 If the following has not been performed yet:
Create a connection between the PLC and the programming device.

10 Download your program to the PLC.

Result: When logic "1" is at the "Output" the section to be locked is not edited.

Note: Locking a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior cycle,
this status remains even after the section has been disabled. The status of these
outputs cannot be modified.

Project structure

46 840 USE 503 00 October 2002

Configuration data

Description The PLC configuration is the interface between the program and the hardware.

The configuration data consists essentially of the component list and the entry in the
address field of the program.

Loadables facilitate communication with the IEC programming language and the
loading of further LL984-Instructions.

840 USE 503 00 October 2002 47

4
Creating a Project

At a Glance

Overview This chapter describes the general procedure for the initial creation of a project. The
most linear sequence possible is used here, in order to show a Concept-newcomer
an easily manageable way of creating a project. Crosslinks between the Menu
Commands are of course possible. As they gain experience, users will learn
shortcuts and alternatives. For more detailed information, please see the relevant
chapters in the user manual.

What’s in this
Chapter?

This chapter contains the following topics:

Topic Page

Overview 48

Step 1: Launching Concept 49

Step 2: Configuring the PLC 50

Step 2.1: Required Configuration 51

Step 2.2: Optional Configuration 53

Step 3: Creating the User Program 57

Step 4: Save 60

Step 5: Loading and Testing 61

Step 6: Optimize and Separate 66

Step 7: Documentation 67

Creating a Project

48 840 USE 503 00 October 2002

Overview

Project Creation The creation of a project has 7 main steps:

Notes

Step Action

1 Launching Concept (See Step 1: Launching Concept, p. 49)
Launch Concept and start a new project.

2 Configuring the PLC (See Step 2: Configuring the PLC, p. 50)
Set the hardware configuration.

3 Creating the user program (See Step 3: Creating the User Program, p. 57)
Create new sections and create your program.

4 Save (See Step 4: Save, p. 60)
Save your project

5 Loading and testing the project (See Step 5: Loading and Testing, p. 61)
Create a link between the PC and the PLC. Load the project in the PLC and start
it. Test the program with the Online Test Function. Now eliminate any mistakes
in the program! Load the altered sections into the PLC.

6 Optimize and Separate (See Step 6: Optimize and Separate, p. 66)
It is now advisable to optimize the program storage capacity and to reload the
optimized program into the PLC. After successfully loading, testing and (if
necessary) optimizing, you may disconnect the PC from the PLC. The program
will now run offline.

7 Documenting (See Step 7: Documentation, p. 67)
Create a complete set of documentation of your project.

Note: The steps "Configuring the PLC" and "Creating the User Program" can be
performed in either order, i.e. the PLC configuration can also be changed after the
creation of the program.

Note: In order to prevent loss of data, you should save your program regularly.

Creating a Project

840 USE 503 00 October 2002 49

Step 1: Launching Concept

Launching
Concept

The procedure for launching Concept is as follows:

Note

Resume Now proceed with Step 2: Configuring the PLC (See Step 2: Configuring the PLC,
p. 50).

Step Action

1 Double click on the Concept icon to launch Concept.

2 Select File → New Project.
Response: The project will be opened as an untitled project.

3 Later on, save this project with a name Step 4: Save, p. 60. A saved project can
be invoked with the Open Project... command, or by using its project icon.

Note: When making additional changes please note the settings in the submenu
Options → Preferences!

Creating a Project

50 840 USE 503 00 October 2002

Step 2: Configuring the PLC

What should be
configured?

Using Project → PLC configuration configure the entire hardware configuration for
your project.

Required
Configuration

The following configurations are necessary for the configuration:
l Specifying the type of PLC (minimum configuration), p. 51
l Set memory partitions, p. 51
l Install loadables, p. 52
l Set I/O map, p. 52

Optional
Configuration

The following configurations are to be used according to the project:
l Set head setup, p. 53
l Set Modbus communication , p. 53
l Set Peer Cop communication , p. 54
l Set data protection, p. 55
l Various PLC settings, p. 56
l ASCII messages (only for 984 LL), p. 56

Note: The PLC type must first be set! All further configurations can then be
executed independently of the processing sequence.

Creating a Project

840 USE 503 00 October 2002 51

Step 2.1: Required Configuration

Precondition The PLC type must first be set! All further configurations can then be executed
independently of the processing sequence.

Specifying the
type of PLC
(minimum
configuration)

The procedure for specifying the type of PLC (minimum configuration) is as follows:

Set memory
partitions

The procedure for setting the memory partition is as follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the PLC Selection menu command from the list.
Response: The PLC selection dialog is opened.

3 From the PLC family list select your PLC type.

4 Select your CPU from the CPU/Executive list.

5 From the Runtime list select the Enable status.
Response: It is possible to program sections in IEC languages (FBD, LD, IL and
ST).
Note: In the Runtime list, the status Not available, Disabled or Only 984 is
displayed, then the selected CPU does not support any IEC programming
languages. If in the list the status Only IEC is displayed, then the selected CPU
exclusively supports IEC languages and these do not have to be explicitly
enabled.

6 With simple tests and programs the configuration can now be exited and the
procedure continued from Step 3: Creating the User Program, p. 57 orStep 4:
Save, p. 60.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the PLC memory partition menu command from the list.
Response: The PLC memory partition dialog is opened.

3 In the Discretes and Words ranges select the probable number of I/O flag bits
and I/O words, to be required by the user program
Note: The maximum address range, that must not be exceeded, can be read on
the right-hand side of the dialog.

Creating a Project

52 840 USE 503 00 October 2002

Install loadables The procedure for installing the loadables is as follows:

Set I/O map The procedure for setting the I/O map is as follows:

Resume Now proceed with Step 3: Creating the user program (See Step 3: Creating the User
Program, p. 57).

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Loadables menu command from the list box.
Response: The Loadables dialog is opened.

3 Select the loadable in the Available: list.
Note: Loadables are assigned in the Loadables, p. 84section.

4 Select the Install => command button.
Response: The selected loadable is moved to the Installed: field.

5 Repeat the steps 3 and 4 until all the loadables required have been installed.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the I/O map menu command from the list.
Response: The I/O map dialog is opened.

3 Select the Supervision time column and enter a time, within which a
communication exchange must take place. If this time is exceeded, an error
message appears.

4 Select the Edit... command button.
Response: The dialog for entering modules is opened.

5 In the Module column, select the ... command button.
Response: The I/O Module Selection dialog is opened.

6 In the Modules column, select the module.
Response: The module is displayed in the current slot.

7 Select the Input start and/or Output start columns and enter the first address
of the occupied input and/or output reference range for the module.

8 Select the module and choose the Paramscommand button.
Response: If the module has a parameter dialog, you can define the parameter
(e.g. disconnect behavior, data format, measuring range) here.

Creating a Project

840 USE 503 00 October 2002 53

Step 2.2: Optional Configuration

General
Information

The following configurations do not need to be executed urgently, but they offer
extended functions.

Set head setup The procedure for specifying the remote I/O is as follows (this procedure is optional
for minimum configuration):

Set Modbus
communication

To set the Modbus communication (Quantum slave, terminal, printer, etc.) proceed
as follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the I/O map menu command from the list.
Response: The I/O map dialog is opened.

3 Select the Head setup... command button.
Response: The Head Setup dialog is opened.

4 Enter the slots for the RIO or NOM modules.
Response: Return to the I/O map dialog.

5 Select the head setup in the Go To list.

6 Select an empty line (last line) in the table, and select the Insertcommand
button.
Response: In the Type column another I/O station is entered.

7 Select the Drop column and enter the station number.
Note: Only as many remote I/O stations can be configured as there are
segments registered in the segment scheduler.

8 Select the head setup in the Go To list for the 2nd drop.

9 Next, carry out steps 3 to 6 of the Set I/O map, p. 52 procedure.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Modbus Port settings menu command from the list.
Response: The Modbus port settings dialog is opened.

3 Make the corresponding settings.

Creating a Project

54 840 USE 503 00 October 2002

Set Peer Cop
communication

If a Modbus Plus link exists, the Peer Cop functionality is able to transfer state RAM
data globally or directly between several nodes on a local network. The procedure
for setting the Peer Cop communication is as follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Config. Extensions → Select Extensions list.
Response: The Select extensions dialog is opened.

3 Check the Peer Cop box.
Response: Return to the PLC configuration window and the Peer Cop menu
command is now available.

4 Select Config. Extensions → Peer Cop.
Response: The Peer Cop dialog is opened.

5 In the Go To range select the local bus devices, and enter the slot.

6 Select in the Global range the Receive... and Send... command buttons to
define the destination and source addresses of the transmission data and/or the
address of the other bus devices.

7 Select in the Specific range the Receive... and Send... command buttons to
define the destination and source addresses of the transmission data and/or the
address of the other bus devices.

Creating a Project

840 USE 503 00 October 2002 55

Set data
protection

Address ranges of coils and holding registers can be protected from being
overwritten by external signals. The procedure for setting the data protection is as
follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Config. Extensions → Configuration extensions.
Response: The Configuration extensions dialog is opened.

3 Check the Data protection box.
Response: Return to the PLC configuration window and the Data protection
menu command is now available.

4 Select Config. Extensions → Data protection.
Response: The Data protection dialog is opened.

5 Check the Data protection box.
Response: The Data protection... menu command can now be selected in the
PLC configuration overview dialog.

6 Select the range for the coils and holding registers. This range should contain
write-protection.

Creating a Project

56 840 USE 503 00 October 2002

Various PLC
settings

Diverse internal PLC data can be evaluated, a watchdog timeout for the user
program can be specified, the time windows for the communication (I/O time disk)
parameterized and the multiple assignment of outputs authorized. The procedure for
setting the PLC settings is as follows:

ASCII messages
(only for 984 LL)

To set the ASCII messages (only for 984LL), execute the following steps:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Specials menu command from the list.
Response: The Specials dialog is opened.

3 Check the Battery coil, Timer register and Time of Day check boxes and enter
an address in the corresponding text boxes.

4 Check the Allow Duplicate Coils check box and enter the address from which
this should be allowed in the text box..

5 In the Watchdog timeout (ms*10): text box enter a numeric value between 2
and 255 (ms). This enables you to set an impulse watchdog for the user program.
Response: As soon as the count pulses exceed the specified time, an error
message appears.

6 In the Online Editing Timeslice (ms): text box enter a numeric value between
3 and 100 (ms). This enables you to define a time for executing the multi-cycle
edit functions (paste, delete, find etc.)

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select from the list ASCII → ASCII Setup.
Response: The ASCII Setup dialog is opened.

3 Enter the total messages, the size of the message width and the number of
ASCII ports (from the I/O periphery) in the text boxes.
Response: In the PLC configuration → ASCII window the ASCII Port Settings
menu command is available.

4 Select from the list ASCII → ASCII port settings.
Response: The ASCII port settings dialog is opened.

5 Make the corresponding settings.
Note: ASCII messages can now be created under Project → ASCII
messages... .

Creating a Project

840 USE 503 00 October 2002 57

Resume Now proceed with Step 3: Creating the user program (See Step 3: Creating the User
Program, p. 57).

Step 3: Creating the User Program

General A user program is created in sections. Each section is programmable in one of the
available languages and has a unique name in the project. Sections can be
generated at any time during the programming.

Overview The creation of a user program consists of 9 steps:

Generating a
New Section

The procedure for generating a new section is as follows:

Step Action

1 Generating a New Section (See Generating a New Section, p. 57)

2 Declaring the Variables (See Declaring the Variables, p. 58)

3 Programming a Section (See Programming a Section, p. 58)

4 Analyzing Program/Section (See Analyzing Program/Section, p. 58)

5 Specifying the section execution sequence (See Set execution order of sections,
p. 59)

Step Action

1 In the main menu File call up the menu command New section... .
Result: The dialog box New program section is opened.

2 Click on the programming language desired for this section.

3 In the text box Section name enter the unique name for this section.

4 Generate all the required sections in this way.

Creating a Project

58 840 USE 503 00 October 2002

Declaring the
Variables

A program consists of functions and Function Blocks (FFBs) or of instructions with
the statement of variables (e.g. signals), addresses or literals. While direct
addresses and literals can be used immediately, variables must be declared before
they can be used in programming. The procedure for declaring variables is as
follows:

Programming a
Section

The procedure for programming a section is as follows:

Analyzing
Program/Section

Check a section or the entire program for syntax violations! The procedure for
analyzing a program/section is as follows:

Step Action

1 In the main menu Project call the menu command Variable declaration... .
Result: The dialog box Variable declaration is opened.

2 Enter the variable name, the associated data type, and if necessary the
reference address, the initial value and a comment.

3 Confirm the entries with OK.
Note: Further editing is also possible from a FFB connection or contact etc. by
double-clicking -> Var. Declaration... . This starts the Variables editor.

Step Action

1 Using File → Open section open the section to be programmed.

2 Create programs according to the rules of the individual programming
languages:
l Function Block Diagram FBD (See Function Block language FBD, p. 173)
l Ladder Diagram LD (IEC) (See Ladder Diagram LD, p. 199)
l SFC (Sequential Control) (See Sequence language SFC, p. 233)
l Instruction list (IL) (See Instruction list IL, p. 279)
l Structured text (ST) (See Structured text ST, p. 341)
l LL984 (Ladder Diagram (Modsoft)) (See Ladder Logic 984, p. 387)

Step Action

1 In the main menu Project call up the menu command Analyze section or
Analyze program.

2 Remove the cause of the displayed or reported error.
Note: Loading a section or program into the PLC is only possible after an error-
free check. (The removal of the cause of warnings is not absolutely necessary.
Checking the warnings is, however, sensible.)

Creating a Project

840 USE 503 00 October 2002 59

Set execution
order of sections

The sections are initially stored in the order of their creation and are executed after
the program has started. In general this sequence must be adjusted project-
specifically to suit the task setting. The procedure for specifying the section
execution sequence is as follows:

Resume Now proceed with Step 4: Saving (See Step 4: Save, p. 60).

Step Action

1 To specify the section execution sequence there are two alternatives:
l In the main menu Project call the menu command Execution order... and

using the command buttons First, Last, Next, Previous sequence the
sections as required.

l In the main menu Project call up the menu command Project browser and
sequence them as required by moving them around in the Project Browser,
p. 491.

Creating a Project

60 840 USE 503 00 October 2002

Step 4: Save

General
Information

General information about saving:
l If you exit a project without saving, you will be automatically asked if you want to

save the project or not. If you answer yes to this question, this begins the same
procedure described below.

l In order to prevent loss of data, projects should be saved regularly during long
periods of configuration or programming sessions.

Saving a Project
for the First Time

The procedure for saving a project for the first time is as follows:

Supplementary
Saving

The procedure for supplementary saving is as follows:

Resume Now proceed with Step 5: Loading and testing the project (See Step 5: Loading and
Testing, p. 61).

Step Action

1 In the File main menu invoke the Save Project As... menu command.

2 In the File name text box, enter the project name name.prj.

3 Select the desired drive and directory from the Directory list.
Alternatively, it is possible to enter the whole path specification in the File name
text box, e.g. c:\product1\reactor3.prj (max. 28 characters +
.prj). If these directories do not yet exist, they will be automatically created.
Note: According to IEC 1131, a project includes all programs, data etc which
belong to a PLC. If several projects (i.e. PLCs) belong to one system, then all
projects should be stored in a common directory named after the system.

4 Click the OK command button.
Response: The project has now been stored in the specified directory under the
given name.

Step Action

1 From the File main menu simply select the Save menu command.

Creating a Project

840 USE 503 00 October 2002 61

Step 5: Loading and Testing

General
Information

Loading and testing programs is only possible if
l either the 16-bit simulator Concept SIM is switched on or
l the Concept SIM 16-bit simulator is switched off and a PLC is attached with a

Modbus Plus, Modbus, TCP/IP cable, or
l the Concept PLCSIM32 simulator is switched on.

Overview Loading and testing macros is divided into 9 main steps:

Connecting the
PC and PLC

The procedure for linking the PC and the PLC is as follows:

Note: Testing using Concept SIM (See Simulating a PLC (16-bit simulator), p. 679)
and Concept PLCSIM32 (See Simulating a PLC (32-bit simulator), p. 682)
simulators is only possible with IEC user programs.

Step Action

1 Loading the EXEC file into the PLC (see Concept Installation Instructions)

2 Connecting the PC and PLC (See Connecting the PC and PLC, p. 61)

3 Loading and Starting the Program (See Loading and Starting the Program, p. 62)

4 Activating the Animation (See Activating the Animation, p. 63)

5 Changing the Values of Literals (See Changing the Values of Literals, p. 63)

6 Changing the Values of Variables (See Changing the Values of Variables, p. 64)

7 Locating Errors (See Locating Errors, p. 64)

8 Downloading Changes (See Downloading Changes, p. 65)

9 Starting and Stopping the PLC (See Starting and Stopping the PLC, p. 65)

Step Action

1 From the Online main menu invoke the Connect... menu command.
Response: The Connect to PLC dialog box opens.

2 Set the protocol type (Modbus, Modbus Plus, TCP/IP or Simulator) and the PLC
node (when working in a network) with which you wish to communicate.

3 Under Access right select the Change Configuration option

4 Confirm the details with OK.

Creating a Project

62 840 USE 503 00 October 2002

Loading and
Starting the
Program

The procedure for loading and launching the program is as follows:

Step Action

1 From the Online main menu invoke the Connect... menu command.
Response: The Download Controller dialog box will be opened in the PLC.

2 When loading the program for the first time, use the All command button.

3 Click the Download command button.
Response: Various dialog boxes will be displayed.

4 Answer the question Stop the program in PLC? Yes/No with Yes.
Note: This question only appears when a program is already running in the PLC.

5 Answer the question Start a program in PLC? Yes/No with Yes, if there
are no errors.
If warnings or errors are reported, these will be listed in the Messages window.
Correct the warnings or errors at the specified point.

Creating a Project

840 USE 503 00 October 2002 63

Activating the
Animation

With the animation (online status report) it is possible to monitor the status of
variables, steps, transitions etc within individual sections of the editor window. The
procedure for activating the animation is as follows:

Changing the
Values of Literals

The procedure for changing literals is as follows:

If… Then…

To display binary values exclusively. To display binary values exclusively, invoke the
Online main menu and click on the Animate
booleans menu command.
Response: The valences of all booleans (variables,
direct addresses, literals) are displayed in colour (0-
Signal = red, 1-Signal = green).

If you want to display the values of all
variables.

To display the values of all variables invoke the
Editing main menu option and select the Select All
menu command (selects all items in the current
section).
Thereafter invoke from the Online main menu option
the Animate selection menu command.
Response: The valences of all values (variables,
direct addresses, literals) are displayed in colour (red
= 0-Signal, green = 1-Signal, yellow = either, for
variables, immediate display of the value or, for multi-
element-variables, displays the value by double-
clicking on the variable).

If you want to enter monitoring fields
in the text languages (IL and ST).

Use the Selected Inspect menu command to paste
the text languages IL and ST into section monitoring
fields.
Response: The current value of the allocated
variables is shown in these monitoring fields. With
multi element variables, only the value of the first
element is shown.
This can be changed by double-clicking on the
monitoring field of the Numeric Inspect Settings
dialog box, which invokes the options available.

Step Action

1 Activate the animation, as described in Activating the Animation, p. 63.

2 Double-click on the literal to be changed.

3 Enter a new value and confirm with OK.
Response: The new value will be sent to the PLC during the next logic scan.

Creating a Project

64 840 USE 503 00 October 2002

Changing the
Values of
Variables

With the Reference data editor (See Reference data editor, p. 531) it is possible to
show and set the values of variables (state, control, force). The procedure for
changing variables is as follows:

Locating Errors If errors occur during the processing of the program by the PLC, these will generally
be reported on screen Messages and entered in an events list in log book form. The
procedure for locating errors is as follows:

Step Action

1 From the main menu, select Online and then the Reference data editor menu
command.

2 Enter the variables to be displayed in the dialog box marked RDE Templates.

3 To set the value highlight the Disable check box, and enter the desired value.

4 The RDE template can be saved under a unique name.
To do this, invoke the RDE main menu option and select the Save template as…
menu command.
Note: Several RDE templates can be invoked at once. To do this, invoke the
RDE main menu option and select the Open template... menu command.

Step Action

1 From the Online main menu invoke the Event Viewer menu command.
Response: A window is opened, in which all errors are listed and described.

2 Select an error line and use the command button Go to Error.
Response: This will go directly to the section in which the error occurred. The
faulty object is highlighted.

3 Correct the program.

4 If your program now has the UNEQUAL status carry out the steps in
Downloading and Starting the Program (See Loading and Starting the Program,
p. 62) once again.
If the program now has the MODIFIED status perform the steps in Downloading
Changes (See Downloading Changes, p. 65) once again.

Creating a Project

840 USE 503 00 October 2002 65

Downloading
Changes

If the project has the MODIFIED status after it has been altered, these changes can
be loaded online into the PLC without stopping the program currently running. The
procedure for downloading changes is as follows:

Starting and
Stopping the
PLC

The procedure for starting and stopping the PLC is as follows:

Resume Now proceed with Step 6: Optimize and Separate (See Step 6: Optimize and
Separate, p. 66).

Step Action

1 From the Online main menu access the Download Changes... menu
command.

2 Click on OK.
Response: The changes will be downloaded to the controller.

Step Action

1 If the same project is running on the PC and PLC (EQUAL), then the PLC can
be started or stopped with Online → Online Control Panel... .

Creating a Project

66 840 USE 503 00 October 2002

Step 6: Optimize and Separate

Optimizing
Projects

At the end of the installation and/or after several runs of Download Changes... it is
useful to perform an optimization, so that any gaps in the program data memory
management are filled. After optimization the project is UNEQUAL on the PC and
PLC and the program must be loaded into the PLC with Download... (Warning:
Program must be stopped and restarted!). The procedure for optimizing projects is
as follows:

Step Action

1 Save the project with File → Save Project.

2 In the File main menu invoke the Close project menu command and take note
of the dialog boxes which then appear.

3 In the File main menu invoke the Optimize Project... menu command and select
the project to be optimized. Take note of the dialog boxes which subsequently
appear.

4 Check the size of the program data memory in the Online main menu with the
Memory Statistics... menu command.

5 The sizes can then be altered with PLC configuration.

6 Save the project with File → Save Project.

7 Reload the optimized program into the PLC using Online → Download... . To do
this the program currently running must be stopped.

8 Start the newly loaded program using Online → Online Control Panel.

Creating a Project

840 USE 503 00 October 2002 67

Separating the
PC and
Controller

After successfully testing the program in the PLC (with a connected process) the PC
can be separated from the controller. The procedure for separating the PC and the
controller is as follows:

Resume Now proceed with Step 7: Documenting (See Step 6: Optimize and Separate, p. 66).

Step 7: Documentation

General
information

Each project should be fully documented. Changes and additions should also be
documented (partial documentation).
Among other things documentation includes:
l Comments on the project (Project → Properties),
l Comments on each separate section (File → Section properties),
l Comments on variables,
l Comments on the functions applied, function modules and DFBs (command

button Comment in the property dialog of each module),
l Comments on steps and transitions (command button Comment in the property

dialog of each element),
l Comments in the form of freely placed text elements in the graphic programming

languages (Object → Text),
l Comments on each line of commands in the textual programming languages
l Comments on user-specific data types,
l Comments on derived function modules (DFBs).

Step Action

1 Please take note of the program status in the footnote!
To maintain consistency EQUAL must be there.
l if it reads MODIFIED, modifications must be loaded first Downloading

Changes, p. 65.
l If it reads UNEQUAL the program must be reloaded into the PLC Loading

and Starting the Program, p. 62.

2 From the Online main menu access the Disconnect... menu command. Take
note of the information in the displayed dialog box.

3 The project can be closed after separation.
In the File main menu invoke the Close project... menu command. Take note of
the information in the dialog box, if displayed.

Creating a Project

68 840 USE 503 00 October 2002

Printing the
documentation

The procedure for printing documentation is as follows:

Step Action

1 In the main menu call up File menu command Print... .

2 In dialog box Documentation contents select Page layout whether each page
should have a uniform header and footer as well as printing a front page. The
appearance of header, footer and front page is stored in the available ASCII files.

3 In the areaContents and in dialog box Documentation contents, select what is
to be printed.

4 If Variable list has been selected, call up Options in order to select the variables
which are to be printed.

5 When Sections has been selected,
l call up Select and specify the sections that are to be printed and
l also call up Options. In area Graphics enlargement factor also specify the

appropriate size of the logic which is to be printed.

6 Activate command button OK.
Reaction: All entries are saved.

7 Make sure that the page set-up of the sections is as desired.
In the main menu call up Viewfollow this with the successive menu commands
Overview and Page Break.

8 Change the order of for example the FFBs in such a way, that there are as few
transitions between adjoining pages as possible.

9 In the main menu call up File the menu commandPrint... again and activate
command button Print.
The printout is made with defined settings and the dialog box is closed.

840 USE 503 00 October 2002 69

5
PLC configuration

At a Glance

Overview This section describes the single process for the hardware configuration.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

5.1 General information about hardware configuration 71

5.2 Configuration in OFFLINE and ONLINE mode 74

5.3 Unconditional Configuration 78

5.4 Optional configuration 90

5.5 Backplane Expander Config 98

5.6 Configuration of various network systems 101

5.7 Quantum Security Settings in the Configurator 111

PLC configuration

70 840 USE 503 00 October 2002

PLC configuration

840 USE 503 00 October 2002 71

5.1 General information about hardware
configuration

At a Glance

Overview This section contains general information about hardware configuration.

What’s in this
Section?

This section contains the following topics:

Topic Page

General information 72

Proceed in the following way with the configuration 73

PLC configuration

72 840 USE 503 00 October 2002

General information

At a Glance The system configuration has far-reaching consequences as it influences the entire
control work mode. It has to define all control-specific information as well as general
information, allocate the necessary memory space and determine the input/output
area. For the first configuration the user must enter several basic details for the PLC
area, such as PLC type and memory. Only valid configurations are authorized.
A configuration always refers to a Project, i.e. the menu command PLC
configuration is only available when a project has been opened.
The configuration is available offline or online.

PLC configuration

840 USE 503 00 October 2002 73

Proceed in the following way with the configuration

Introduction In this section you are given a general overview on how to proceed with the
configuration.

Use
Configuration
Menu

There are menu commands that absolutely must be carried out and are available in
the PLC Configuration window. Grayed out menu commands are currently
unavailable and can be enabled for extending the hardware-configuration in the
Config. Extensions directory with the menu command Select Extensions.

Read in Module
Set-up

The PLC module set-up is entered manually and can be compared with the
connected hardware in ONLINE mode. After it has been read in, the modules
missing in Concept are shown in the I/O map, and can be re-edited.
The I/O addressing must then be done for each module.
When doing this, please ensure the permitted references are used:

Downloading the
Hardware
Configuration

The hardware configuration of a project is saved and can be downloaded to the
simulation program Concept-SIM, Concept-SIM32 or an automation installation. By
doing this, the EQUAL status is established between the host computer and the
PLC.

Modules References

Analog input modules 3x references

Analog output modules 4x references

Digital input modules 3x or 1x references

Digital output modules 4x or 0x references

Expert modules - input 3x or 1x references

Expert modules - output 4x or 0x references

Note: The Concept-SIM must be deactivated for transfer of the configuration to a
real PLC.

PLC configuration

74 840 USE 503 00 October 2002

5.2 Configuration in OFFLINE and ONLINE mode

At a Glance

Overview This section contains information for configuration in OFFLINE and ONLINE mode.

What’s in this
Section?

This section contains the following topics:

Topic Page

General information 75

Available Functions in OFFLINE and ONLINE Modes 76

PLC configuration

840 USE 503 00 October 2002 75

General information

At a Glance In OFFLINE mode no link is created between programming device and PLC, and the
configuration can be performed. In ONLINE mode there is a link between
programming device and PLC, so that only one conditional configuration can take
place.

PLC configuration

76 840 USE 503 00 October 2002

Available Functions in OFFLINE and ONLINE Modes

Introduction This section contains an overview of the available functions in OFFLINE and/or
ONLINE mode. The possibilities in the ONLINE mode are different in their use of the
simulator and the real PLC.

Configuration in
OFFLINE Mode

In OFFLINE mode all menu commands are available for the hardware configuration
in the PLC Configuration window. The submenus in the Config. Extensions
directory can be enabled in the Select Extensions dialog to extend the
configuration.
If the PLC is in ONLINE mode, you can switch to OFFLINE mode using the menu
command Online → Disconnect.... In the footer of the editor window, the status-bar
indicator NOT CONNECTED appears.

Configuration in
ONLINE Mode
and in the Active
Simulator

A configuration is not possible in ONLINE mode with an active simulator or a
Modbus Plus connection, i.e. no entries can occur. The available dialogs can only
be invoked and read.
You can switch to ONLINE mode using the menu command Online → Connect...
and establishing a connection between the host computer and the PLC.

Configuration in
ONLINE Mode
and in the Real
PLC

Using the connection to a real PLC a configuration in ONLINE mode is possible, as
long as the Change Configuration access level is activated.
It is not possible to configure or reconfigure a PLC while the PLC is in RUN mode.
If a program is already running in the PLC, it must be stopped before reconfiguration
can be implemented. Stop the PLC with Online → Online Control Panel → Stop
PLC. After editing, the changes are automatically transferred to the hardware when
the PLC is started up.

You can switch to ONLINE mode using the menu command Online → Connect...
and establishing a connection between the host computer and PLC.

Note: When you delete an Expert module in ONLINE mode in the I/O map, the
allocated loadable is also automatically deleted. If you wish to place this module
back in the I/O map at a later time, it will be necessary to download again.

PLC configuration

840 USE 503 00 October 2002 77

Effects of
ONLINE
Changes

If the following conditions are satisfied, all animated windows are automatically
closed if a change is made in the I/O map (e.g. deleting or adding to a module)
Conditions:
l ONLINE mode
l animated section(s)
l Status between PLC and host computer is EQUAL
l Controller stopped
l Access level Change Configuration is activated.

PLC configuration

78 840 USE 503 00 October 2002

5.3 Unconditional Configuration

At a Glance

Overview This section contains a description of the configuration to be performed
unconditionally and an overview of the presettings in the configuration menu.

What’s in this
Section?

This section contains the following topics:

Topic Page

Precondition 79

PLC selection 80

CPU Selection for the PLC Type 80

PLC memory mapping 83

Loadables 84

Segment manager 86

I/O Map 87

PLC configuration

840 USE 503 00 October 2002 79

Precondition

Introduction Only when the CPU has been selected in the PLC Selection dialog will all the other
menu commands become available in the PLC Configuration window.
The following dialogs are a minimum selection and MUST be edited as part of the
hardware configuration.
l PLC Selection
l PLC Memory Partition
l Loadables
l Segment Scheduler
l I/O Map
The preferences can be adopted as long as they are compatible with the hardware
being used.

PLC configuration

80 840 USE 503 00 October 2002

PLC selection

Introduction Select the PLC family (Quantum, Compact, Momentum or Atrium) and the CPU, as
well as the memory size, according to use. All the available CPUs are listed in the
list box.

Determine logic
zone

The logic zone for the desired programming language (IEC or LL984) can be
expanded to the corresponding PLC type with the PLC family selection.
The assignment and installation of the loadables is determined according to the
following settings:

Determine total
IEC memory

By defining the total IEC memory size and the global data, you also automatically
determine the IEC-program memory size. On the basis of this size, the available
memory space for the LL984 user program can also be determined.

CPU Selection for the PLC Type

Introduction When installing hardware (Concept EXECLoader), you are required to load various
EXEC data files (*.BIN). This determines the firmware for various PLC types. The
available PLC types, which can be operated by loading the EXEC data files with the
corresponding CPUs, are shown in the following tables.

Selection Meaning

Enable Installation of the IEC loadables. A desired memory area for the IEC
zone can be set up. The assignment and installation of the loadable
pairing to the selected CPU is performed automatically in the
Loadables dialog.

Disable No installation of the IEC loadables. This will completely switch off
the IEC zone and the entire logic zone will be made available for the
LL984.

984 only/IEC only Some Momentum CPUs can only be programmed in the IEC zone
or only in the LL984 zone.

Note: With global data it is the memory space of the unlocated variables.

Note: Total IEC memory = IEC program memory + global data

PLC configuration

840 USE 503 00 October 2002 81

Loading
Firmware for
Quantum PLC
Types

The following table shows the current EXEC versions, which are located on the
Service Release CD and supplied with Concept.
Quantum PLC type:

Loading
Firmware for
Quantum LL984
Hot Standby
Mode

The Quantum CPUs not ending in X or S can be used for the LL984 Hot Standby
mode. A special EXEC file must be downloaded onto the CPU for this. The loadable
for LL984 Hot Standby (CHS_208.DAT) is automatically installed by the system.

140 CPU Q186Vxxx
(IEC+LL984)

Q486Vxxx
(IEC+LL984)

Q58Vxxxx
(IEC+LL984)

Q5RVxxxx
(IEC+LL984)

QIECVxxx
(IEC only) *

IEC Memory
(kbyte)

113 02 X
(LL984 only)

- - - -

113 02S - - - - X max. 150

113 02X X
(LL984 only)

- - - -

113 03 X - - - - max. 136

113 03S - - - - X max. 379

113 03X X - - - - max. 136

213 04 X - - - - max. 305

213 04S - - - - X max. 610

213 04X X - - - - max. 305

424 0x - X - - - max. 465

424 0xX - X - - - max. 465

434 12 - - X - - max. 890

534 14 - - X - - max. 2550

434 12A
(Redesigned
CPU)

- - - X - max. 890

534 14A
(Redesigned
CPU

- - - X - max. 2550

Note: * After the QIECVxxx.BIN EXEC data file has been loaded, the EMUQ.EXE
loadable must be loaded into Concept in the Loadables dialog.

PLC configuration

82 840 USE 503 00 October 2002

Loading
Firmware for
Quantum IEC Hot
Standby Mode

The 140 CPU 434 12 and 140 CPU 534 14 CPUs can also be used for IEC Hot
Standby. A special EXEC file must be downloaded onto the CPU for this. The
loadables for IEC Hot Standby (IHSB196.EXE and CHS_208.DAT) are
automatically installed by the system.

Loading
Firmware for
Quantum
Equation Editor

The Quantum CPUs not ending in X or S can be used for the LL984 equation editor.
A special EXEC file must be downloaded onto the CPU flash for this. This EXEC file
is not part of the Concept delivery range but can be obtained over the Internet at
www.schneiderautomation.com.

Loading
Firmware for
Momentum PLC
Type

The following table shows the current EXEC versions, which are located on the
Service Release CD and supplied with Concept.
Momentum PLC type (CPU 171 CCC 7x0 x0):

Momentum PLC type (CPU 171 CCC 9x0 x0):

Momentum PLC type (CPU 171 CCS 7x0 x0):

The stripped EXEC of the M1 supports up to a maximum of 44 I/O modules.

171 CCC M1Vxxx
(LL984 only)

M1IECxxx
(IEC only)

IEC Memory
(kbyte)

760 10-984 X -

760 10-IEC - X 256

780 10-984 X -

780 10-IEC - X 256

171 CCC M1EVxxx
(LL984 only)

M1EWIxxx
(IEC only)

IEC Memory
(kbyte)

960 20-984 X -

960 30-984 X -

960 30-IEC - X 220

980 20-984 X -

980 30-984 X -

980 30-IEC - X 220

171 CCS M1Vxxx
(LL984 only)

M1IECxxx
(IEC only)

IEC Memory
(kbyte)

700 10 X -

700/780 00 X -

760 00-984 X -

760 00-IEC - X 160

PLC configuration

840 USE 503 00 October 2002 83

Loading
Firmware for
Compact PLC
Types

The CTSXxxxD.BIN EXEC file must be downloaded onto the CPU flash for all
Compact CPUs.

Loading
Firmware for
Atrium PLC
Types

A special EXEC file (see table below) must be downloaded onto the CPU flash for
each Atrium CPU.

PLC memory mapping

At a Glance For the creation of the program, sufficient address zones for the necessary number
of input bits, output/flag bits, input words and output/flag words are to be entered.
An overview of the state RAM value is also given:
l Max. state RAM
l State RAM in use
l State RAM use
An unassociated value is shown with an error message, and can be automatically
suited to the given value.

IEC Hot Standby
data

After configuration of an IEC Hot Standby system, enter sufficient address zones for
the required number of input words. The higher the number of IEC Hot Standby input
words, the larger the transmit buffers for the IEC component. This means all the
bigger the IEC application in use can be.

180 CCO EXEC file

121 01 AI3Vxxxx.BIN

241 01 AI5Vxxxx.BIN

241 11 AI5Vxxxx.BIN

CAUTION

System cycle time influence!

The size of the configured state RAM in an IEC Hot Standby project has
a significant effect on the system cycle time. As soon as a configured
cycle ends, the next starts after the transfer of all state RAM data to the
CHS module.

Failure to follow this precaution can result in injury or equipment
damage.

PLC configuration

84 840 USE 503 00 October 2002

Loadables

Introduction Loadables are loadable programs, which are only loaded into the PLC when
required.
The various uses of loadables are described in the following sections.

Downloading
Loadables for the
IEC Runtime
System

The following loadables for the combined execution of IEC and LL984 programs
(CPU 113 0x, CPU 213 0x or CPU 424 02) are available:

Downloading
Loadables for
Expert Modules

The following loadables are available for Expert modules:

Note: When you delete an Expert module in online mode in the I/O map the
allocated loadable is also automatically deleted. If you wish to place this module
back in the I/O map at a later time, it will be necessary to download again.

If... Then...

you want to use CPUs with the
mathematics processor for IEC
programming,

install the loadable pairing @1S7196 and @2I7196.

you want to use CPUs without the
mathematics processor for IEC
programming,

install the loadable pairing @1SE196 and @2IE196.

If... Then...

you are configuring the 140 ESI
062 00 module with 32 bit runtime
system and the 140-NOA-611-x0
module

install the loadable ASUP196.
Note: The ULEX196 loadable is automatically installed.
The ASUP 196 loadable is only installed automatically
on 32-bit CPUs. On 16-bit CPUs with Stripped EXEC
(QIECVxxx.BIN), the ASUP196 loadable must be
installed afterwards.

you are configuring the 140 ESI
062 10 module,

install the loadable pairing NSUP + ESI.
Note: These two loadables do not come with the
Concept software package, but are supplied with the
140 ESI 062 10 module and must be unpacked at the
time of installation (Unpack...).

PLC configuration

840 USE 503 00 October 2002 85

Downloading
Loadables for
LL984

These are not included in the Concept delivery range. You can order these
loadables via the "Automation Customer Service Bulletin Board (BBS)" (related
topics README).

Downloading
Loadables for
Hot Standby

The following loadables for Hot Standby mode are available:

Downloading
User Loadables

Loadables that are created by the user are called user loadables (*.EXE, *.DAT).
They are located in the Concept directory DAT and using the Unpack... command
button they can be inserted into the Loadables dialog at installation.

Downloading
Loadables for
IEC Support Only

The following loadables for IEC support only (CPU 113 xxS without mathematics
processor) are available:

Downloading
Loadables for
INTERBUS and
IEC Support Only

The following loadables for IEC support are available:

If... Then

you are using the LL984 Hot
Standby mode,

the loadable CHS_208 is automatically installed.

you are using the IEC Hot Standby
mode,

the loadables IHSB196 and CHS_208 will be loaded
automatically.

If... Then

your application uses REAL
arithmetic,

install the loadable EMUQ196.
Note: The loadable is installed together with the EXEC-
file QIECVxxx (installation in Concept EXECLoader).

If the CPU Then

l 113 02S
l 113 03S
l 213 04S
l 534 14
l 434 12
is configured,

install the loadable ASUP196.
Note: The ULEX196 loadable is automatically installed.
The ASUP 196 loadable is only installed automatically
on 32-bit CPUs. On 16-bit CPUs with Stripped EXEC
(QIECVxxx.BIN), the ASUP196 loadable must be
installed afterwards.

113 03 is configured install the loadable pairing @1SE196 + @2IE196. The
ULEX196 loadable is automatically installed.

213 04 is configured, install the loadable pairing @1S7196 + @2I7196. The
ULEX196 loadable is automatically installed.

PLC configuration

86 840 USE 503 00 October 2002

Downloading
Loadables for
INTERBUS and
LL984 Support
Only

The following loadables for LL984 support are available:

Segment manager

At a Glance If a remote I/O st. (Drop) is configured, the sequence and method of processing the
LL984 section can be defined in the dialog box Segment manager.
When deleting (in the dialog box I/O map) a configured remote I/O st. (Drop), it is
automatically deleted in the segment manager.

Mode of
Functioning

Every I/O st. (Drop) is assigned a segment. It is therefore not permitted to enter
fewer segments in the segment scheduler, than there are I/O st.s (Drops) configured
in the I/O map. In the segment scheduler, the maximum segment numbers is by
default set at 32.
The configurator checks the agreement between the two dialogs and classifies the
I/O st.s (Drops) in the segment scheduler. A window informs you which I/O stations
(Drops) have been inserted.

Altering the
segment
processing
sequence

The sequence for segment processing can be altered manually, in that the segment
number or I/O st. number can be edited in the corresponding line. For the local I/O
st. (Drop), 1 is entered in the first line of the dialog box in the columnsIn stat. and
Out stat. automatically.1
If no sequence was defined, the segments are processed in ascending order.

Sorting criteria
for additional I/O
st.s

Recently added I/O st.s (Drops) are classified in the segment manager according to
the following criteria:

If the CPU Then

l 113 02
l 113 03
l 213 04
is configured,

you can install the following loadables:
l ULEX196
l @1S7196 + @2I7196 + ULEX196
Note: The ULEX196 loadable is automatically installed
with this.

l 534 14
l 434 12
is configured,

the loadables ASUP196 and ULEX196 will be loaded
automatically.

If… Then…

A new I/O st. is added, it is automatically classified behind the last available line.

All determined segments are
already in use,

the last segment is reused for the input of the new I/O st.
(Drop), i.e. a segment number can be repeated, as the
stations are differentiated.

PLC configuration

840 USE 503 00 October 2002 87

Available
methods for
segment
processing

When setting the segment manager, the following methods of processing can be
selected:

Advanced
settings in the
segment
manager

With the "Controlled" type of processing, only the reference numbers 0x and 1x are
authorized, which determines when the logic for the corresponding section is
processed.
The field In. stat. and Out stat. allow the input of corresponding I/O st. numbers,
which must be configured. If a 0is entered, no input/output is served by this segment
number.

I/O Map

Introduction In the I/O map, configure the I/O stations (drops) with the modules in use. Afterwards
perform the I/O addressing and the parameterization of the configured modules.

Allocating Drops Drop numbers can be allocated optionally except for the first one (from 2 to). The
first drop number is automatically recognized as the local drop, and cannot be
edited.

Processing type Meaning

Continuous Cyclic processing

Controlled Manually controlled processing

WDT reset Reset watchdog timer

End of logic End of processing

Note: If subprograms are to be used in LL984, the last configured segment cannot
be processed in the segment manager. The type of solution must unconditionally
be End of logic.

PLC configuration

88 840 USE 503 00 October 2002

Configuring the
Backplane
Expander

The 140 XBE 100 00 module is necessary to expand the backplane. By doing this
you can connect a second backplane, and gain 13 extra slots. The 140 XBE 100 00
module is mounted in both backplanes and, in addition, requires an independent
power supply (power supply unit).
Expanded backplanes are configured in Concept in the first drop using slots 2-1 to
2-16.
A more detailed description about the configuration of expanded backplanes with
the 140 XBE 100 00 module is given in the chapter Backplane Expander Config,
p. 98.

Allocating the I/O
Ranges

When allocating the I/O ranges the following references are allowed:
l 3x references for analog input modules
l 4x references for analog output modules
l 3x or 1x references for digital input modules
l 4x or 0x references for digital output modules
l 1x or 3x references for Expert modules (input)
l 0x or 4x references for Expert modules (output)

Parameterization Configured modules can be individually parameterized to determine the variable
process conditioned settings.

CAUTION

The slot assignment of the 140 XBE 100 00 is not shown in the
configurator, so a double assignment is possible.

You should take note of the hardware slots of the module and the power
supply, and should not occupy these slots with other modules in the I/O
map.

Failure to follow this precaution can result in injury or equipment
damage.

Note: The flow of data via an expanded backplane is quicker than via the remote
system.

Note: The unique addressing is checked so that no addresses are occupied twice
within the configuration.

PLC configuration

840 USE 503 00 October 2002 89

Connection to
other Network
Systems

In addition to local and remote drops, links to other network systems can be
established with configured coupling modules:
l Ethernet
l INTERBUS
l Profibus DP
See also the chapter entitled Configuration of various network systems, p. 101 and
Configuration examples, p. 805.

Read in Map In the ONLINE mode of the stopped PLC, the hardware modules are listed in the I/
O map and can be transferred as follows:

Step Action

1 Open a project.

2 Open the PLC Configuration window.

3 Using the PLC Type menu command, open the PLC Type dialog and select the
PLC type.

4 Connect the host computer to the PLC (Online → Connect...).

5 Open the I/O Map dialog (PLC Configuration → I/O Map).

6 Use the Edit command button to open the Local Quantum I/O station dialog.

7 Check the Poll check box.
Response: The recognized modules are listed in the Read column in color.

8 Double click on the colored text boxes in the Read column.
Response: The listed modules are transferred to the Module column.

9 Enter the address zone in the corresponding columns (In.Ref., In End, Out Ref.,
Out End).

10 After the hardware matching between the host computer and the PLC, the
configuration can continue.

PLC configuration

90 840 USE 503 00 October 2002

5.4 Optional configuration

At a Glance

Overview This section contains the description of the optional configuration.

What’s in this
Section?

This section contains the following topics:

Topic Page

Settings for ASCII Messages 91

Making Additional Functions Available in the Configurator 92

Data Exchange between Nodes on the Modbus Plus Network 93

Protecting Data in the State RAM before Access 94

Parameterize interfaces 94

Special Options 96

PLC configuration

840 USE 503 00 October 2002 91

Settings for ASCII Messages

Introduction To create the ASCII messages, you are required first of all to set a mask, which
contains the number of messages, the message area size and the ASCII ports.
Once you have done that you can create the ASCII messages, which are then
processed with the Ladder Logic programming language.

Precondition ASCII messages are only possible in the Quantum family, and can only be
processed with the LL984 processing language.

Procedure To create the ASCII messages, you must first set the mask:

Step Action

1 In the PLC Configuration → ASCII window, open the ASCII Setup dialog.

2 In the Total Messages text box specify a value from 1 to 999.

3 In the Message Area Size text box specify a value from 1 to 9999 bytes.

4 In the ASCII Ports text box specify an interface from 2 to 32.

5 Confirm your entries with the OK command button.
Response: The settings are saved and the dialog is exited.

6 In the Project main menu open the ASCII Message Editor dialog (with the
ASCII Messages... menu command).

7 Create the ASCII messages here, see also the description ASCII Message
Editor, p. 543.

PLC configuration

92 840 USE 503 00 October 2002

Making Additional Functions Available in the Configurator

Introduction Additional functions can be used for the configuration, if they have previously been
enabled or set in the Select Extensions dialog.

Activating
Advanced
functions/
Dialogs

By checking the check box or setting the Ethernet modules the corresponding menu
commands are enabled and can be edited in the PLC Configuration → ASCII
window.
The following functions/dialogs can be activated:
l Data protection
l Peer Cop
l Hot Standby
l Ethernet I/O-Scanner

Specify Coupling
Modules

Coupling modules must be configured in order to connect to other network systems.
To do this, specify the number of modules in the corresponding list box, which are
then available in the I/O map.
The following systems can be configured:
l TCP/IP Ethernet
l Symax-Ethernet
l MMS-Ethernet
l Profibus DP

Note: The available functions are dependent upon the configured CPU. Also see
the online help "Select Extensions".

Note: The maximum number of coupling modules depends upon the configured
CPU. Also see the online help "Select Extensions".

PLC configuration

840 USE 503 00 October 2002 93

Data Exchange between Nodes on the Modbus Plus Network

Introduction With a Modbus Plus (MB+) connection you can configure a PLC using the Peer Cop
functionality, so that data exchange with another PLC is possible. In such a case,
the Peer Cop takes data from a reference area within a "source" PLC and places
this via the Modbus Plus (MB+) network into a determined reference range of a
"destination" PLC. This operation is performed in the same identical way for each
token rotation.
Using the Peer Processor, input data from other nodes on the local network can be
received by the user program. Likewise, output data from the user program can be
transmitted to other nodes on the local network.
The Peer Cop has two variants for data exchange:
l global data exchange
l specific data exchange

Precondition The Peer Cop menu command is only available if, in the Select extensions dialog
the Peer Cop check box is checked.

Global Data
Exchange

With global data exchange, the data sent from the current "source" PLC is received
by all "destination" PLC devices in the Modbus Plus (MB+) network. Up to 64
destination devices can be reached in this way, which can each receive the data in
8 destination addresses of the State RAM.

Specific Data
Exchange

With specific data exchange, data is sent from a selected "source" PLC to a selected
"destination" PLC in the Modbus Plus (MB+) network. To do this, enter the
respective addresses for the data exchange in a table at the corresponding source
and destination nodes (1-64).
The address must correspond to the MB+ node address on the back of the
respective module. This address setting can be altered and must be specified before
mapping. (See also hardware description)
Select the node to be read or written according to the hardware configuration.

PLC configuration

94 840 USE 503 00 October 2002

Protecting Data in the State RAM before Access

Introduction Output address ranges (coils and registers) can be protected by specifying the
address from which writing is possible in the Data Protection dialog. All addresses
before this are write-protected.

Precondition The Data Protection menu command is only available if, in the Select Extensions
dialog, the Data Protection check box is checked.

Entering Access
Protection

This access protection operates in connection with "normal" data access, which
happens externally via a Modbus or Modbus Plus interface. Access from the host
computer out is in any case permitted and bypasses this protection mechanism.

Parameterize interfaces

At a Glance Depending on their use in Concept, the following interfaces must be parameterized:
l ASCII interface
l Modbus interface

Parameterize
ASCII interface

For an ASCII message transmission, in the dialog box ASCII port settings the serial
communication parameters for the port interfaces can be specified.

Note: The dialog box ASCII port settings is only available when the number of
ASCII ports has been specified beforehand in the dialog box ASCII set up.

PLC configuration

840 USE 503 00 October 2002 95

Parameterize
Modbus
interface

For a Modbus coupling, in the dialog box Modbus port settings the serial
communication parameters of the port interface can be entered on the programming
device, on a CPU and the NOM assemblies (Network Option Module).

Switch on the NOM

Interface
parameterizing
with network
connections
between Modbus
and Modbus Plus

A network connection between Modbus and Modbus Plus nodes can be made in the
dialog box Modbus port settings by checking the check box Bridge mode.

CAUTION

Do not make any online changes since this will cause all Editors
to close!

The Modbus port settings should not be altered in Online mode, or else
all Editors are automatically closed.

Failure to follow this precaution can result in injury or equipment
damage.

Note: The settings of a Modbus coupling in Concept only have an effect if the
switch on the front of the assembly is at the lowest position (mem). In this case, the
baud rate must be set at 19200 Bd.

ASCII

RTU

mem

Note: The settings are then only effective when the switch on the front of the
assembly is in the mid-position (RTU).

PLC configuration

96 840 USE 503 00 October 2002

Special Options

Introduction In the Specials dialog you can configure special options:
l Battery coil
l Timer register:
l Time stamp for MMI applications (TOD)
l Allow duplicate coils
l Watchdog-Timeout (ms)
l Time slice for online changes (ms)

Battery coil You can specify an address of a coil, which shows the status of the battery. This
assignment is used for battery monitoring. In this way, the weak battery can be
replaced early to avoid a loss of data.

Timer Register: The content of the time register is incremented every 10 ms and has a free value
between 0000 and FFFF hex.

Time for MMI
applications
(Date/Time)

This time stamp is only intended for a MMI application. Eight registers are reserved
for setting the clock.
The TOD input (Time of Day) is in the American format:

4xxxx Control register

Discrete 1 (MSB)
Discrete 2
Discrete 3
Discrete 4

1 = set clock values
1 = read clock values
1 = preset discrete
1 = error discrete

4xxxx+1 Day of week (1 - 7)

4xxxx+2 Month (1 - 12)

4xxxx+3 Day (1 - 31)

4xxxx+4 Year (00 - 99)

4xxxx+5 Hours (0 - 23)

4xxxx+6 Minutes (0 - 59)

4xxxx+7 Seconds (0 - 59)

PLC configuration

840 USE 503 00 October 2002 97

Allow Duplicate
Coils

You can assign several outputs to a coil. To do this, check the check box, and
specify the first address to which several outputs can be allocated in the First Coil
Address: text box.

Watchdog
Timeout (ms*10)

You can set a pulse supervision for the user program by entering a numerical value
of between 2 and 255 (ms). As soon as there are no count pulses within the specified
time, an error message will appear.

Time Slice for
Online Changes
(ms)

You can set a time supervision for the communication between the nodes by
entering a numerical value between 3 and 30 (ms). As soon as there is no
communication within the specified time, an error message will appear.

Note: This function is unavailable with the Momentum PLC family.

PLC configuration

98 840 USE 503 00 October 2002

5.5 Backplane Expander Config

At a glance

Introduction This chapter describes the function and configuration of the backplane expander.

What’s in this
Section?

This section contains the following topics:

Topic Page

Generals to Backplane Expander 99

Edit I/O Map 99

Error handling 100

PLC configuration

840 USE 503 00 October 2002 99

Generals to Backplane Expander

Introduction The Quantum backplane expander provides a single backplane expansion to a local
drop or a RIO drop through the 140 XBE 100 00 module.

Function
description

The module connects two Quantum backplanes (primary and secondary) through a
custom cable and support all data communication between the backplanes. Each
backplane requires a 140XBE10000 module that occupy a single slot and requires
its own power supply.

Procedure at an
Error

The backplane expander is designed in the way that if it is not installed or improperly
connected, it will not effect the functionality of the primary rack. Only the backplane
expander installed and connected properly, the both racks are then able to
communicate and controlled by prime CPU or RIO drop controller.

Edit I/O Map

Requirements Currently only Quantum controllers support backplane expander. Primary rack
contains the CPU or RIO drop controller and is allowed to config all type of additional
modules up to the physical slot address limitation. All I/O modules can be also added
to the secondary rack. However, option modules, such as NOMs, NOEs and CHSs
must reside in the primary rack.
To place a module in proper rack, it is necessary to add an extra attribute in the I/O
module database to specify that the module is available only for the primary or
secondary or both.

PLC configuration

100 840 USE 503 00 October 2002

Configuration in
I/O Map

Exist Quantum local drop or RIO drop only support one rack up to sixteen slots. With
backplane expander, it is extended as if the drop support two racks, and each has
sixteen slots. By clicking at the button ... on Module column, all modules available
to the rack clicked (primary or secondary) will show in the module selection dialog
that can be selected and assigned to the current slot.
Each rack requires a 140 XBE 100 00 module to make backplane expander work
properly.

The module will just look like an unfilled slot in the Concept I/O map. If any module
is configured in the secondary rack, it is user’s responsibility to ensure there is one
slot in each rack that is reserved for 140 XBE 100 00 module and all hardware are
connected properly.

Error handling

Introduction The validate processes for the primary rack will be applied to the secondary rack too,
such as duplicate reference, missing input or output reference, etc. Besides existing
regular validation, traffic cop will do some special check for the backplane expander.

No reserved slot
for
140 XBE 1000 00

If any module is found in the secondary rack and there is no empty slot left in either
of racks when user trying to exit the rack editor dialog, an error message will be
displayed: "There must be one empty slot reserved for 140 XBE 100 00 module in
each rack to make backplane expander work." The rack editor dialog will then not
be closed.

Special module
in secondary
rack

To prevent any special module (such as, NOE, CHS, etc) being added to the
secondary rack, rack editor dialog do not allow to cut/copy these head modules. It
will also check module personalities before user try to do any paste operation. If
some unsupported module for the secondary rack is found, an error message will be
displayed: "The buffer contains some module that can not reside in the secondary
rack." The paste operation will be aborted.

Note: The 140 XBE 100 00 module does not have a personality code and therefore
can not be recognized by the Concept.

PLC configuration

840 USE 503 00 October 2002 101

5.6 Configuration of various network systems

At a Glance

Overview This section contains the description of the configuration of various network
systems.

What’s in this
Section?

This section contains the following topics:

Topic Page

Configure INTERBUS system 102

Configure Profibus DP System 103

Configure Ethernet 104

RTU extension 105

Ethernet I/O Scanner 106

How to use the Ethernet / I/O Scanner 109

PLC configuration

102 840 USE 503 00 October 2002

Configure INTERBUS system

At a Glance The configuration of the INTERBUS system can take place within the PLC families
of Quantum and Atrium.

INTERBUS
configuration
with Quantum

With the Quantum family the coupling of a remote bus takes place in a Quantum
I/O station (Drop). To do this, the INTERBUS Master NOA 611 00 must be
configured and parameterized in the CMD tool (Configuration Monitoring and
Diagnostic Tool).
See also Configuration example 4 (See Quantum Example – INTERBUS Control,
p. 835).

INTERBUS
configuration
with Atrium

With the Atrium family, the coupling of the remote bus takes place via the master
assembly 180 CCO 121 01, 180 CCO 241 01 or 180 CCO 241 11 in this way, the
INTERBUS Master CRP 660 0x is automatically inserted into the local I/O station
(Drop). The INTERBUS I/O station (Drop) nodes are configured in the CMD tool
(Configuration Monitoring and Diagnostic tool), saved as a *.SVC data file and
imported to Concept. After the import into the I/O map the configuration can be
changed afterwards in Concept.
See also Configuration example 9 (See Atrium Example – INTERBUS Controller,
p. 877).

PLC configuration

840 USE 503 00 October 2002 103

Configure Profibus DP System

Introduction The configuration of the Profibus DP system can take place within the PLC families
of Quantum and Atrium.

Profibus DP
Configuration
with Quantum

With the Quantum family the connection to the Profibus DP system takes place in a
Quantum drop. To do this, you must first of all set the number of bus controllers
(CRP 811 00) used in the Select Extensions dialog. The modules then appear in
the list box of the I/O Module Selection dialog and can be inserted into the I/O map.
The configuration of the Profibus DP node is created in the SyCon configuration tool,
saved as a *.CNF file and transferred directly to Concept. However, the
configuration (*.CNF) can be imported to Concept at a later time.

Importing the
Profibus DP
Configuration

To import the configuration (*.CNF) to Concept, proceed as follows:

Configuration
Example

An example of configuration is given in Example 11 (See Quantum Example -
Profibus DP Controller, p. 849).

Step Action

1 In the PLC Configuration window, open the I/O Map dialog.

2 Select the drop and use the Edit… command button to open the Edit Drop
dialog.

3 Double click on the … text box in the Module column.
Response: The I/O Module Selection dialog is opened.

4 In the Specials column, select the CRP-811-00 module, and press the OK
command button.
Response: The CRP-811-00 module is entered in the I/O map.

5 In the Edit Drop dialog, select the line of the mapped bus controller (CRP-811-
00) and press the Parameters command button.
Response: The Edit CRP-811-00 (Profibus DP) dialog is opened.

6 Using the Import… command button, open the Select Import File window.

7 To import, specify the path of the CNF file, and press the OK command button.
Response: The Profibus DP configuration is entered in the Concept I/O map.
Note: After the Profibus DP nodes are entered into Concept, the reference
ranges for all modules and diagnostic data must be edited later.

PLC configuration

104 840 USE 503 00 October 2002

Configure Ethernet

Introduction An Ethernet bus system can be configured within the following PLC families:
l Quantum
l Atrium
l Momentum

Precondition In order to connect to the Ethernet bus system, a PCI network card must be
available in the host computer. Afterwards the Ethernet interface needs to be
parameterized and the drivers that are provided on CD need to be installed
(Configure Ethernet, p. 896).
After the Ethernet module has been slotted into the central backplane, the internet
address, subnet mask, gateway and frame type can be allocated by the network
administrator.

Configuration
with Quantum

The procedure for Ethernet configuration in Concept is as follows:

Error Action After configuration, only start the PLC once the display "link" has appeared on the
Ethernet module. If this is not the case, withdraw the Ethernet module from the
central backplane and then slot it in again. If the display "link" is still not shown, there
must be a serious error.

Step Action

1 In the PLC Configuration window, open the Select Extensions dialog.

2 Enter the number of Ethernet modules (NOE) in the text boxes.
Response: The modules then appear in the list box in the I/O Module Selection
dialog and can be inserted into the I/O map.

3 In the PLC Configuration window, open the Ethernet I/O Scanner dialog, in
which you enter the information from the network administrator (Internet
address, subnet mask, gateway, frame type).

4 In the Online main menu, open the Connect to PLC dialog (menu command
Connect...).

5 In the Protocol Type list box, select the option TCP/IP, and in the IP address
or DNS Hostname text box, enter the address of the TCP/IP card.

6 After programming, in the Online main menu, open the Download Controller
dialog (menu command Download...), and click on the Download command
button.
Response: A message appears, asking whether you would like to start the PLC.

7 Before you confirm the message with the Yes command button, the display "link"
must appear on the Ethernet module.

PLC configuration

840 USE 503 00 October 2002 105

Available
Ethernet
Modules

The maximum number of NOE modules is dependent upon the configured CPU
(select in the PLC Selection dialog):

Configuration
with Momentum

The configuration of the Ethernet bus system with Momentum is described in the
section Momentum Example - Ethernet Bus System, p. 895.

RTU extension

Requirements To make the RTU menu command available you have to choose a Compact CPU
with LL984 programming language in the PLC Selection dialog.

CTS-/RTS-Delay In this dialog you can set time delay for CTS or RTS independently for Comm port
1 of your Compact PLC. This feature allows modem communications with radios that
require longer time frames. The delay time range is 0 ... 500 ms using 10 ms units.
Enter the time delays your require.

Secured Data
Area (SDA)

This feature allows you to configure an area in RAM that is secured from being
overwritten. Secured Data Area (SDA) is a block of the Compact PLCs RAM that is
set aside as 6x data space. The SDA can only be written to by specific functions that
require secured data storage. General purpose Modbus commands, builtins, can
not write to the SDA. Modbus Read (function 20) is able to read from the SDA,
Modbus Write (function 21) is not able to write to the SDA. The SDA size range is 0
... 128 K words using only 1 K word blocks. Enter the size your require.
Refer to the applicable user manual for the specific function for the required SDA
size. For example, for Gas Flow, refer to the "Starling Associates Gas Flow
Loadable Function Block" User Guide (890 USE 137 00).

PLC Login
Password
Protection

For the description of password protection, refer to section Set PLC Password,
p. 589.

CPUs Number of NOE modules

113 02/S/X 0 - 2

113 03/S/X 0 - 2

213 04/S/X 0 - 2

424 0x/X 0 - 6

434 12 0 - 6

534 14 0 - 6

PLC configuration

106 840 USE 503 00 October 2002

Ethernet I/O Scanner

Introduction This function is for the following Quantum modules available:
l 140-NOE-211-x0
l 140-NOE-251-x0
l 140-NOE-771-00
l 140-NOE-771-10
This function is for the following Momentum modules available:
l 171-CCC-960-20
l 171-CCC-980-20
l 171-CCC-980-30
l 171-CCC-960-30
Ethernet address and I/O scanning parameters can be modified using the Ethernet
/ I/O Scanner dialog box. From the PLC Configuration window, select Ethernet /
I/O Scanner. This menu option will only be available if you have selected an M1
Processor Adapter with an Ethernet port or have Quantum TCP/IP Ethternet
modules (NOE) as specified above.
This section describes how to configure the Ethernet port, including IP address,
other address parameters and I/O scanning.

Ethernet
Configuration
Options

The Ethernet / I/O Scanner screen offers three options for configuring the Ethernet
port on an M1 Processor Adapter:

Configuration options Meaning

Specify IP Address This is the default option. It allows you to type the IP address,
gateway and subnet mask in the text boxes in the upper righthand
corner of the screen.

Use Bootp Server Click this radio button if you want the address parameters to be
assigned by a Bootp server. If you select this option, the address
parameter text boxes in the upper righthand corner of the screen
will be grayed out. They will not display the actual address
parameters.

Disable Ethernet Click this radio button if you want to disable the Ethernet port.
Disabling the port will reduce the scan time for the Processor
Adapter.

PLC configuration

840 USE 503 00 October 2002 107

Setting Ethernet
Address
Parameters

If you choose to specify the IP address, you should complete all four text boxes in
the upper righthand corner of the dialog box:

Configuring I/O Once the Ethernet port address parameters have been set, you may assign
parameters for I/O scanning.
The text box Master Module (Slot) contains the Module type that you have
configured for Ethernet communications. In the case of the Momentum Ethernet
controller the slot will always be number 1, and the configured module type is
displayed in the variable dialog field. If you are configuring a NOE in a standard rack
the slot number assigned in the I/O Map will be displayed along with the module
type. Until the I/O Map is conmpeted this test field will indicate "Unassigned". In
instances where more than one NOE is configured the I/O Scan parameters reflect
the unit currently in the dialog box from which you can select the additional unit by
activating the Pulldown list.
The text field Health Block (1x/3x) is only available by using the 140-NOE-771-00.
The health timeout is used for setting the health bit. If the response arrives before
the end of the HealthTimeout period, the health bit is set; otherwise it is cleared. If
the Health Timeout is zero, the health bit is set to true once communications are
established, and it is never cleared.

The text box Diagnostic Block (3x/4x) is only available by using the 140-NOE-771-
00 and allows you to define the starting register of a number of bits which are used
for diagnostic. The block can be specified in either 3x or 4x registers. For more
information, refer to the user guide Quantum NOE 771 x0 Ethernet Modules, model
no. 840 USE 116 00.

Parameters Meaning

Internet Address Type a valid IP address in the Internet Address text box (for
example: 1.0.0.1).
Caution: POTENTIAL FOR DUPLICATE ADDRESSES!
Obtain a valid IP addresses from your system administrator to
avoid duplication. Failure to observe this precaution can result
in injury or equipment damage.

Gateway Consult your system administrator to determine the appropriate
gateway. Type it in the Gateway text box.

Subnet Mask Consult your system administrator to obtain the appropriate
subnet mask. Type it in the Subnet Mask text box (for example:
255.255.255.0).

Frame Type For NOE there is an additional Frame Type field. Your two
possible choices are ETHERNET II or IEEE 802.3

Note: The configuration of the health block, refer to chapter 5.2 in the user guide
Quantum NOE 771 x0 Ethernet Modules, model no. 840 USE 116 00.

PLC configuration

108 840 USE 503 00 October 2002

I/O Scanner Configuration table:

How to use For more information about how to use the Ethernet / I/O Scanner dialog see section
How to use the Ethernet / I/O Scanner, p. 109.

Column Description

Slave IP Address Type the IP address of the slave module in this column (for example:
128.7.32.54). This address will be stored in a pulldown menu, so that
you may use it in another row by clicking on the down arrow and
selecting it.

Unit ID If the slave module is an I/O device attached to the specified slave
module, use the Unit ID column to indicate the device number. The Unit
ID is used with the Modbus Plus to Ethernet bridge to route to Modbus
Plus networks.

Health Timeout Use this column to specify the length of time in ms to try the transaction
before timing out. Valid values are 0 ... 50 000 ms (1 min).
To avoid timing out, specify 0.

Rep Rate Use this column to specify how often in ms to repeat the transaction.
Valid values are 0 ... 50 000 ms (1 min).
To repeat the transaction continually, specify 0.

Read Ref Master Use the read function to read data from the slave to the master.
This column specifies the first address to be read (for example: 400001).

Read Ref Slave Use the read function to transfer data from the slave to the master.
This column specifies the first address of up to 125 to read to (for
example: 400050).

Read Length Use the read function to read data from the slave to the master.
This column specifies the number of registers to read (for example: 20).

Write Ref Master Use the write function to write data from the master to the slave.
This column specifies the first address to write (for example: 400100).

Write Ref Slave Use the write function to write data from the master to the slave.
This column specifies the first address of up to 100 to write to (for
example: 400040).

Write Length Use the write function to write data from the master to the slave.
This column specifies the number of registers to write (for example: 40).

Description You can type a brief description (up to 32 characters) of the transaction
in tis column.

Note: You may include read and write commands on the same line.

PLC configuration

840 USE 503 00 October 2002 109

How to use the Ethernet / I/O Scanner

Introduction This section describes how to complete your Ethernet I/O configuration using the
Copy, Cut, Paste, Delete and Fill Down buttons.

Copy and Paste To save time when typing similar read and write commands, you may copy and
paste entire rows within your configuration:

Cut and Paste To move a row within the configuration list, follow the direction:

Delete To delete a row within the configuration list, follow the direction:

Step Action

1 Select the row you want to copy by clicking on the row number at the far left.

2 Click the Copy button above the I/O configuration list.

3 Select the row where you would like to paste the data (by clicking on the row
number at the far left).

4 Click the Paste button.

Step Action

1 Select the row you want to move by clicking on the row number at the far left.

2 Click the Cut button above the I/O configuration list.

3 Select the row where you would like to paste the data (by clicking on the row
number at the far left).

4 Click the Paste button.
Note: Multiple rows may be cut/copy and pasted. The number of rows actually
pasted is limited by the number of rows selected. For example if you copy 10
rows to the clipboard, then select an area of 6 rows to past, only the first six rows
of clipboard data is pasted.

Step Action

1 Select the row you want to delete by clicking on the row number at the far left.

2 Click the Delete button above the I/O configuration list.
Note: Multiple rows may be deleted.

PLC configuration

110 840 USE 503 00 October 2002

Fill down To copy part of any row to the next row or to a series of adjoining rows, use the Fill
Down button, following the steps in the table

NOE Ethernet
modules

In this dialog the NOE Ethernet modules 140 NOE 211 x0,140 NOE 251 x0 and 140
NOE 771 10 are parameterized (in the Ethernet Configuration area).
In this dialog the NOE Ethernet module 140 NOE 771 00 is parameterized and
addressed (in the I/O Scanner Configuration area).
For the followings modules you receive an function description:
l 140 NOE 211 x0 (with Web Embedded Server)
l 140 NOE 211 x0 (with Ethernet TCP/IP)
l 140 NOE 251 x0 (with Web Embedded Server)
l 140 NOE 251 x0 (with Ethernet TCP/IP)
l 140 NOE 771 00
l 140 NOE 771 10

Momentum
Ethernet
modules

In this dialog the Momentum Ethernet modules are addressed (in the I/O Scanner
Configuration area).
For the followings modules you receive an function description:
l 171 CCC 980 30 IEC
l 171 CCC 980 30 984
l 171 CCC 980 20 984
l 171 CCC 960 30 IEC
l 171 CCC 960 30 984
l 171 CCC 960 20 984

Step Action

1 Use your mouse to select the data you would like to copy and the cells you would
like to copy it to.
Note: You must select one contiguous block of cells, with the data to be copied
in the first row. You cannot select two separate blocks.

2 Click the Fill down Button.
Result: The data from the first row is copied to the selected cells in the defined
block.

PLC configuration

840 USE 503 00 October 2002 111

5.7 Quantum Security Settings in the Configurator

PLC configuration

112 840 USE 503 00 October 2002

Quantum Security Parameters

Introduction Various security parameters can be defined in the configuration of the Quantum
CPUs 140 434 12A and 140 534 14A which are indicated in the log file *.LOG. This
guarantees secure process documentation which includes the logging with the
automatic logout, write access of NOEs/NOMs on the PLC as well as limited
participants (max. 12) for network write access.
The definition of the security parameters can be found in dialog Configuration →
Quantum Security Parameters.
Dialog Quantum Security Parameters:

Requirements The security parameters are only available if the following conditions have been met:
l Supervisor Rights (see Concept under Help → About... → Current User:)
l only with CPUs 140 CPU 434 12A and 140 CPU 534 14A

Automatic
Logout

The automatic logout procedure logs a user out as soon as a predefined time limit
(max. 90 minutes) is reached with no activity on the connection. This could be a lack
of read or write activity from the programming device to the PLC for example.
The Never setting disables this function, i.e. automatic logout cannot occur.

Quantum Security Parameters

Modbus+ Write Restriction Table

Cancel

OK

Help

Never

Enable Write Restriction

Disable all Writes from NOEs/NOMs

Delete

Add...

Clear

00.00.00.00.00
1.3.0.7.1
1.3.0.7.2
1.3.0.7.3

Auto Logout:

Disable all Writes from CPU Modbus Ports

PLC configuration

840 USE 503 00 October 2002 113

Disable all Writes
from NOEs/
NOMs

By disabling all writes from NOEs/NOMs to the PLC, all write instructions are
ignored by the CPU and responded to with an error message.

Disable all Writes
from CPU
Modbus Ports

To disable writes from the Quantum CPU Modbus connections, check the Disable
all Writes from CPU Modbus Ports check box.

Limited Write
Access on the
Modbus Plus
Network

A restricted number of participants that have access to the PLC can be configured
for the Modbus Plus network. A maximum of 12 participants are allowed, the
participant address of the programming device is automatically entered in the
participant list and cannot be deleted.
Dialog Add Modbus Plus Address (press Add...)

Note: MSTR-Read-Operations are not executed when the check box Disable all
Writes from NOEs/NOMs is checked. (This also means the error state of the
MSTR block shows no error!)

Add Modbus Plus Address

HelpCancelOK

1

Enter a Modbus Plus address which
will have write access to the PLC.

Modbus Plus Address: 3 0 7 4|

PLC configuration

114 840 USE 503 00 October 2002

Examples of
Modbus Plus
Paths

Modbus Plus Network:

The address must be entered from the point of view of the PLC which is ready to
receive to the sender and therefore begins with the first gateway or the next PLC.
This depends whether the sender and receiver are in the same Modbus Plus
segment (no bridges/gateways), or if the sender and receiver are in different
segments (separated by one or more bridges/gateways).
Example 1:
Concept (MB+ address 1) writes to PLC 6. There are no bridges or gateways
between the two nodes. Therefore the entered address looks like this: 1 or 1.0.0.0.0
Example 2:
PLC 2 (MB+ address 2) writes to PLC 6. A gateway is between the nodes (MB+
address 3). Therefore the entered address looks like this: 3.2.0.0.0

Note: Only the first Modbus Plus address can be detected by the PLC, i.e. as soon
as the first bridge or gateway address is recognized, all devices in the network
behind bridge or gateway have write access to the PLC. This means that PLC 7
can also write to PLC 6 in our example (Address: 3.7.0.0.0).

Quantum PLC
MB+ address: 4

Quantum PLC
MB+ address: 6

Concept station
MB+ address: 1

Modbus Plus Gateway

MB+ address: 3 MB+ address: 5

Quantum PLC
MB+ address: 2

Quantum PLC
MB+ address: 7

840 USE 503 00 October 2002 115

6
Main structure of PLC Memory
and optimization of memory

At a Glance

Overview This Chapter describes the main structure of the PLC Memory and the optimization
of the memory with the different PLC families.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

6.1 Main structure of the PLC Memory 117

6.2 General Information on Memory Optimization 118

6.3 Memory Optimization for Quantum CPU X13 0X and 424 02 122

6.4 Memory Optimization for Quantum CPU 434 12(A) and 534
14(A)

136

6.5 Memory optimization for Compact CPUs 147

6.6 Memory optimization for Momentum CPUs 157

6.7 Memory optimization for Atrium CPUs 163

PLC Memory and optimization

116 840 USE 503 00 October 2002

PLC Memory and optimization

840 USE 503 00 October 2002 117

6.1 Main structure of the PLC Memory

General structure of the PLC Memory

At a Glance In principle, the memory of a PLC consists of three parts:
l the memory for the Exec file,
l the state RAM and
l the program memory.

Memory for the
EXEC file

The EXEC file contains the operating system and one or two runtime systems (IEC
and/or LL984) for operating the user programs.

State RAM The state RAM can be divided into different zones:
l the used 0x, 1x, 3x and 4x references,
l a reserve for further 0x, 1x, 3x and 4x references,
l possibly an extended memory zone for 6x references.

Program Memory The program memory can be divided into different zones:
l the I/O map etc.,
l a reserve for extensions,
l the ASCII messages (if used), the Peer Cop configuration (if used), the Ethernet

configuration (if used) etc.,
l a reserve for extensions,
l the IEC loadables (if required),
l the Global Data, consisting of the Unlocated Variables,
l the IEC program memory with the program codes, EFB-Codes and program data

(section data and DFB instance data),
l possibly the ULEX loadable for INTERBUS or other loadables,
l the LL984 program memory.

PLC Memory and optimization

118 840 USE 503 00 October 2002

6.2 General Information on Memory Optimization

Introduction

Overview This Section contains general information on memory optimization.

What’s in this
Section?

This section contains the following topics:

Topic Page

Possibilities for Memory Optimization 119

PLC-Independent 119

PLC Memory and optimization

840 USE 503 00 October 2002 119

Possibilities for Memory Optimization

Description The possibilities for memory optimization are partly dependent on the PLC family
and CPU used:
l PLC-Independent, p. 119
l Memory Optimization for Quantum CPU X13 0X and 424 02, p. 122
l Memory Optimization for Quantum CPU 434 12(A) and 534 14(A), p. 136
l Memory optimization for Compact CPUs, p. 147
l Memory optimization for Momentum CPUs, p. 157
l Memory optimization for Atrium CPUs, p. 163

PLC-Independent

Introduction There are 3 PLC-independent possibilities for memory optimization:
l Optimize State RAM for 0x and 1x References, p. 119
l Only Download Required Loadables, p. 120
l Optimize Expansion Size, p. 121

Optimize State
RAM for 0x and
1x References

The state RAM contains the current values of the 0x, 1x, 3x and 4x references.

Even if the state RAM zone is outside the program memory zone, the size of the
state RAM for 0x and 1x references influences the size of the program memory.
Therefore, do not select a state RAM zone that is too large. In theory, the procedure
only needs as many 0x and 1x references as the hardware requires. However, you
will require a somewhat larger number of references if the I/O map is to be extended.
It is advisable to be generous with the number of references during the creation
phase of the user program when frequent changes are still being made. At the end
of the programming phase, the number of these references can be reduced in order
to create more space for the user program.

The settings for the 0x-, 1x-references can be found in Project → PLC
Configurator → PLC Memory Partition.

In this dialog box, there is an overview of the size of the occupied state RAM zone
and the percentage of the maximum state RAM that this represents.

PLC Memory and optimization

120 840 USE 503 00 October 2002

Optimize state RAM for 0x, 1x, 3x and 4x references:

Only Download
Required
Loadables

All the installed loadables are downloaded into the program memory zone and
occupy space. Therefore, only install those loadables which you really need (related
topics Loadables, p. 84).

The memory space occupied by the installed loadables is displayed in the
Loadables dialog box under Project → PLC configurator → Used Bytes. This
information is calculated from the size of the loadable files and from the memory size
assigned to the loadables.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

potential extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 121

Optimize
Expansion Size

Each time, there is the possibility to reserve memory space for later expansion in the
mapping zone (I/O map) and in the configuration expansion zone (Peer Cop). This
memory space is necessary if e.g. the I/O map or the Peer Cop settings should be
changed online. It is advisable to overestimate the reserves during the installation
phase of the user program, that is, when modifications are often being made. At the
end of the programming phase the reserves may be reduced again, to provide more
space for the user program.

The settings for the mapping reserves are found in Project → PLC Configurator →
I/O Map → Expansion Size. The settings for the Peer Cop reserves can be found
in Project → PLC Configurator → Config. Extensions → Select Extensions →
Peer Cop → Expansion Size.
Optimize Expansion Size

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

122 840 USE 503 00 October 2002

6.3 Memory Optimization for Quantum CPU X13 0X
and 424 02

Introduction

Overview This Section describes the memory optimization for the Quantum CPUs CPU X13
0X and CPU 424 02.

What’s in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Quantum CPU X13 0X and
424 02

123

Selecting Optimal EXEC File 125

Using the Extended Memory (State RAM for 6x references) 129

Harmonizing the IEC Zone and LL984 Zone 131

Harmonizing the Zones for Global Data and IEC Program Memory 133

PLC Memory and optimization

840 USE 503 00 October 2002 123

General Information on Memory Optimization for Quantum CPU X13 0X and
424 02

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configuration
in the configurations overview in the PLC zone. The entry for the memory size is
given in Nodes for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
l Selecting Optimal EXEC File, p. 125
l Using the Extended Memory (State RAM for 6x references), p. 129
l Harmonizing the IEC Zone and LL984 Zone, p. 131
l Harmonizing the IEC Zone and LL984 Zone, p. 131

Note: Also note the PLC-independent possibilities for memory optimization (See
General Information on Memory Optimization, p. 118).

PLC Memory and optimization

124 840 USE 503 00 October 2002

Structure of the CPU X13 0X memory (simplified representation):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

LL984 operating system

Operating system

EXEC file
Q186vxxx.bin
Q486vxxx.bin

potential extended memory
(6x references)

potential ULEX loadable

Configuration

Configuration

IEC
total
memory

PLC Memory and optimization

840 USE 503 00 October 2002 125

Selecting Optimal EXEC File

Introduction The simplest and most basic option is to download the optimal EXEC file for your
requirements onto the PLC (see also Installation Instructions).

Depending on which EXEC file you select, zones will be reserved in the program
memory of the PLC for IEC and/or LL984 programs. Therefore, if you install a
’combined EXEC file’ and then only use one of the two language types in the user
program, the program memory will not be used optimally.
Therefore, decide which languages you want to use:
l Exclusive Use of IEC, p. 126
l Exclusive Use of LL984, p. 127
l Joint Use of IEC and LL984, p. 128

PLC Memory and optimization

126 840 USE 503 00 October 2002

Exclusive Use of
IEC

If you want to use IEC exclusively, download the EXEC file "QIEC_xxx.bin" (not
available for CPU 424 02). Since this EXEC file does not contain an operating
system, you have to download the IEC runtime system onto the PLC in the form of
a loadable (EMUQ.exe) (related topics Loadables, p. 84). The loadable is
downloaded into the program memory zone and takes up memory space.
Structure of the CPU X13 0X memory with exclusive use of IEC:

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

IEC loadable EMUQ.EXE

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 127

Exclusive Use of
LL984

If you want to use LL984 exclusively, download the EXEC file "Q186Vxxx.bin" for a
CPU X13 0X and the EXEC file "Q486Vxxx.bin" for a CPU 424 02.
Structure of the CPU X13 0X memory with exclusive use of LL984:

LL984 program memory

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

Configuration

PLC Memory and optimization

128 840 USE 503 00 October 2002

Joint Use of IEC
and LL984

If joint use of IEC and LL984 is required, download the EXEC file "Q186Vxxx.bin" for
a CPU X13 0X and the EXEC file zone "Q486Vxxx.bin" for a CPU 424 02. Since
these EXEC files only contain the LL984 operating system, you have to download
the IEC operating system onto the PLC in the form of loadables (@2I7/@2IE or
@1S7/@1SE) (see also Loadables, p. 84). Both loadables will be downloaded into
the program memory zone and occupy memory space.

Structure of the CPU X13 0X memory with joint use of IEC and LL984:

Note: Joint use of IEC and LL984 is not possible with the CPU 113 02 because its
memory is too small for this application.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 129

Using the Extended Memory (State RAM for 6x references)

Introduction If a CPU 213 04 or CPU 424 02 is used, you can make a zone in the state RAM
available for the 6x references.

Even if the state RAM memory zone is outside the program memory zone, the size
of the state RAM influences the size of the program memory.

Using the extended memory (state RAM for 6x references):

Note: 6x references are registers and can only be used with LL984 user programs.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

potential extended memory
(6x references)

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

130 840 USE 503 00 October 2002

If you do NOT
use 6x

If you do not want to use any 6x references, you can, with a CPU 213 04, select
whether to reserve state RAM 6x references or not.

Under Project → PLC Configuration → PLC Selection select from the Memory
Partition the 48 K Logic / 32 K Memoryentry.

If you use 6x If you want to use 6x references, select under Project → PLC Configuration →
PLC selection in the Memory Partition list box, the 32 K Logic / 64 K
Memoryentry.

Note: With a CPU 424 02 there is no option for deactivating the 6x zone.

PLC Memory and optimization

840 USE 503 00 October 2002 131

Harmonizing the IEC Zone and LL984 Zone

Introduction With joint use of IEC and LL984 sections, the sizes of both zones should be
harmonized with each other.
Harmonizing the IEC zone and LL984 zone:

Global Data
(Unlocated Variables)

LL984 program memory

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

132 840 USE 503 00 October 2002

Size of IEC Zone The size of the total IEC memory and also the available space for LL984 data (user
program) is determined by the memory size of the loadable @2I7 or @2IE.

You can define the memory size of the loadables in Project → PLC Configuration
→ Loadables → Install @2I7 or @2IE → Edit... → Memory Size.

The total size is given in paragraphs. A paragraph equals 16 bytes.

For the @1S7 or @1SE loadables, no memory size is needed. Ensure that "0" is
specified here.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory, p. 133.

Size of LL984
Zone

The size of the available memory for LL984 user programs is calculated using the
following formula:
LL984 zone = available LL984 nodes – memory size of loadable @2I7/@2IE – size
of loadables @2I7 or @2IE – size of loadables @1S7 or @1SE

When doing this calculation, it must be ensured that the size of the LL984 zone is
node-oriented and the remaining instructions are byte-oriented.

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The loadable memory size is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory, p. 133).

PLC Memory and optimization

840 USE 503 00 October 2002 133

Harmonizing the Zones for Global Data and IEC Program Memory

Introduction The total IEC memory space, determined by the loadable memory size, (see
Chapter Harmonizing the IEC Zone and LL984 Zone, p. 131) is made up of two
zones:
l IEC Program Memory

l comprising the EFB codes,
l the program codes,
l the section data,
l the DFB specimen data,
l the block links,
l possibly data from online changes,
l possibly animation data etc.

l Global Data
l comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.

PLC Memory and optimization

134 840 USE 503 00 October 2002

Harmonizing the Zones for IEC Program Memory and Global Data:

Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IEC zone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Logic
zone

Configuration
in PLC Selection
dialogIEC

total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 135

Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The loadable memory size is too small (see Chapter Harmonizing the IEC Zone

and LL984 Zone, p. 131).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).

PLC Memory and optimization

136 840 USE 503 00 October 2002

6.4 Memory Optimization for Quantum CPU 434 12(A)
and 534 14(A)

Introduction

Overview This section describes the memory optimization for the Quantum CPUs 434 12(A)
and 534 14(A).

What’s in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Quantum CPU 434 12(A) and
534 14(A)

137

Harmonizing IEC Zone and LL984 Zone 139

Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434
12(A) / 534 14 (A))

144

PLC Memory and optimization

840 USE 503 00 October 2002 137

General Information on Memory Optimization for Quantum CPU 434 12(A) and
534 14(A)

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configurator
in the configurations overview in the PLC zone. The memory size is given in nodes
for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
l Harmonizing IEC Zone and LL984 Zone, p. 139
l Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434

12(A) / 534 14 (A)), p. 144

Note: Also note the PLC-independent possibilities for memory optimization (See
General Information on Memory Optimization, p. 118).

PLC Memory and optimization

138 840 USE 503 00 October 2002

Structure of the CPU 434 12(A) / 534 14(A) memory (simplified representation):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

Operating system

EXEC file
Q58Vxxxx.bin
Q5RVxxxx.bin

Extended memory (6x references)
(cannot be disabled)

LL984 operating system

IEC operating system

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 139

Harmonizing IEC Zone and LL984 Zone

Introduction The EXEC file "Q58Vxxxx.bin" is required for the CPU 434 12 and 534 14.
The EXEC file "Q5RVxxxx.bin" is required for the CPU 434 12A and 534 14A
(redesigned CPUs).
These EXEC files contain the runtime systems for IEC and LL984.

The sizes of the logic zones for IEC and LL984 should be harmonized with each
other. The size of both zones can be defined in Project → PLC Configurator →
PLC type... → PLC selection.

Depending on the size you select for the IEC zone, zones will be reserved in the
program memory of the PLC for IEC and/or LL984 programs. Therefore, if you
define a combined IEC and LL984 zone and then only use one of the two language
types in the user program, the program memory will not be used optimally.
Therefore, decide which languages you want to use:
l Exclusive Use of IEC, p. 140
l Exclusive Use of LL984, p. 141
l Joint Use of IEC and LL984, p. 142

PLC Memory and optimization

140 840 USE 503 00 October 2002

Exclusive Use of
IEC

If you require exclusive use of the IEC, select in Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the entry Enable and drag
the total IEC memory slider to the right hand margin (highest value). This will
completely switch off the LL984 zone and the entire logic zone will be made
available for the IEC user program.
Structure of the CPU 434 12 (A)/ 534 14(A) memory with exclusive use of IEC:

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 141

Exclusive Use of
LL984

If you require exclusive use of LL984, select from Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the Disable entry. This will
completely switch off the IEC zone and the entire logic zone will be made available
for the LL984 user program.
Structure of the CPU 434 12(A)/ 534 14(A) memory with exclusive use of LL984:

LL984 program memory

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Configuration

PLC Memory and optimization

142 840 USE 503 00 October 2002

Joint Use of IEC
and LL984

When using IEC and LL984 jointly, you should harmonize the sizes of both zones
with each other.

By setting the total IEC memory size and Global Data you can automatically
determine the size of the IEC program memory, and also the available space for
LL984-data (user program).

The size of the available memory for LL984 user programs is calculated using the
following formula:

LL984 zone = available LL984 nodes - total IEC memory

When performing this calculation, it must however be ensured that the size of the
LL984 zone is node-oriented and the remaining instructions are kilobyte-oriented.

To set the total IEC memory, select from Project → PLC Configuration → PLC
selection in the IEC Operating System list box, the Enable entry. The IEC zone is
now enabled and you can enter the required memory size in the Total IEC Memory
text box. The memory size is given in kilobytes.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory, p. 133.

PLC Memory and optimization

840 USE 503 00 October 2002 143

Structure of the CPU 434 12(A)/ 534 14(A) memory with exclusive use of IEC and
LL984:

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The logic zone is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory (CPU 434 12(A) / 534 14 (A)), p. 144).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

144 840 USE 503 00 October 2002

Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434 12(A)
/ 534 14 (A))

Introduction The fixed total IEC memory (see chapter Harmonizing IEC Zone and LL984 Zone,
p. 139) is made up of two zones.

The total IEC memory space, determined by the loadable memory size, (see
Chapter Harmonizing the IEC Zone and LL984 Zone, p. 131) is made up of two
zones:
l IEC Program Memory

l comprising the EFB codes,
l the program codes,
l the section data,
l the DFB specimen data,
l the block links,
l possibly data from online changes,
l possibly animation data etc.

l Global Data
l comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.

PLC Memory and optimization

840 USE 503 00 October 2002 145

Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434 12(A)
/ 534 14 (A))

Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IEC zone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

Configuration in
PLC Selection
dialog

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Logic
zone

IEC
total
memory

Configuration

PLC Memory and optimization

146 840 USE 503 00 October 2002

Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The total IEC memory size is too small (see Chapter Harmonizing IEC Zone and

LL984 Zone, p. 139).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).

PLC Memory and optimization

840 USE 503 00 October 2002 147

6.5 Memory optimization for Compact CPUs

At a Glance

Overview This Section describes the memory optimization for Compact CPUs.

What’s in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Compact CPUs 148

Harmonizing IEC Zone and LL984 Zone 150

Harmonizing the Zones for Global Data and IEC Program Memory (Compact) 155

PLC Memory and optimization

148 840 USE 503 00 October 2002

General Information on Memory Optimization for Compact CPUs

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configuration
in the configurations overview in the PLC zone. The entry for the memory size is
given in Nodes for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
l Harmonizing IEC Zone and LL984 Zone, p. 150
l Harmonizing the Zones for Global Data and IEC Program Memory (Compact),

p. 155

Note: Also note the PLC-independent possibilities for memory optimization (See
General Information on Memory Optimization, p. 118).

PLC Memory and optimization

840 USE 503 00 October 2002 149

Structure of a Compact CPU memory (simplified representation)

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Peer Cop configuration, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

Operating system

EXEC file
CTSXxxxx.binLL984 operating system

IEC operating system

Expansion Size

IEC
total
memory

Configuration

PLC Memory and optimization

150 840 USE 503 00 October 2002

Harmonizing IEC Zone and LL984 Zone

Introduction The IEC zone "CTSXxxxx.bin", required for Compact CPUs, contains the runtime
systems for IEC and LL984 (see also Installation instructions).

The sizes of the logic zones for IEC and LL984 should be harmonized with each
other. You can define the size of both zones in Project → PLC Configurator → PLC
Type... → PLC Selection.

Depending on the size you select for the IEC zone, zones will be reserved in the
program memory of the PLC for IEC and/or LL984 programs. Therefore, if you
define a combined IEC and LL984 zone and then only use one of the two language
types in the user program, the program memory will not be used optimally.
Therefore, decide which languages you want to use:
l Exclusive Use of IEC, p. 151
l Exclusive Use of LL984, p. 152
l Joint Use of IEC and LL984, p. 153

PLC Memory and optimization

840 USE 503 00 October 2002 151

Exclusive Use of
IEC

If you require exclusive use of the IEC, select in Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the entry Enable and drag
the total IEC memory slider to the right hand margin (highest value). This will
completely switch off the LL984 zone and the entire logic zone will be made
available for the IEC user program.
Structure of the Compact CPU memory with exclusive use of IEC

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Peer Cop configuration, etc.

IEC
total
memory

Configuration

PLC Memory and optimization

152 840 USE 503 00 October 2002

Exclusive Use of
LL984

If you require exclusive use of LL984, select from Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the Disable entry. This will
completely switch off the IEC zone and the entire logic zone will be made available
for the LL984 user program.
Structure of the Compact CPU memory with exclusive use of LL984

LL984 program memory

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Peer Cop configuration, etc.
Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 153

Joint Use of IEC
and LL984

When using IEC and LL984 jointly, you should harmonize the sizes of both zones
with each other.

By setting the total IEC memory size and Global Data you can automatically
determine the size of the IEC program memory, and also the available space for
LL984-data (user program).

The size of the available memory for LL984 user programs is calculated using the
following formula:

LL984 zone = available LL984 nodes - total IEC memory

When performing this calculation, it must however be ensured that the size of the
LL984 zone is node-oriented and the remaining instructions are kilobyte-oriented.

To set the total IEC memory, select from Project → PLC Configuration → PLC
selection in the IEC Operating System list box, the Enable entry. The IEC zone is
now enabled and you can enter the required memory size in the Total IEC Memory
text box. The memory size is given in kilobytes.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory (Compact), p. 155.

PLC Memory and optimization

154 840 USE 503 00 October 2002

Structure of the Compact Memory with joint use of IEC and LL984:

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The logic zone is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory (Compact), p. 155).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

Peer Cop configuration, etc.

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 155

Harmonizing the Zones for Global Data and IEC Program Memory (Compact)

Introduction The fixed total IEC memory (see chapter Harmonizing IEC Zone and LL984 Zone,
p. 150) is made up of two zones.
l IEC Program Memory

l comprising the EFB codes,
l the program codes,
l the section data,
l the DFB specimen data,
l the block links,
l possibly data from online changes,
l possibly animation data etc.

l Global Data
l comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.
Harmonizing the Zones for Global Data and IEC Program Memory (Compact):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Peer Cop configuration, etc.

Logic
zone

Configuration in
PLC Selection
dialog

IEC
total
memory

Configuration

PLC Memory and optimization

156 840 USE 503 00 October 2002

Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IEC zone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The total IEC memory size is too small (see Chapter Harmonizing IEC Zone and

LL984 Zone, p. 150).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).

PLC Memory and optimization

840 USE 503 00 October 2002 157

6.6 Memory optimization for Momentum CPUs

Introduction

Overview This Section describes the memory optimization for Momentum CPUs.

What’s in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Momentum CPUs 158

Selecting Optimal IEC Zone 160

Harmonizing the Zones for Global Data and IEC Program Memory
(Momentum)

161

PLC Memory and optimization

158 840 USE 503 00 October 2002

General Information on Memory Optimization for Momentum CPUs

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configuration
in the configurations overview in the PLC zone. The entry for the memory size is
given in Nodes for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

PLC Memory and optimization

840 USE 503 00 October 2002 159

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
l Selecting Optimal IEC Zone, p. 160
l Harmonizing the Zones for Global Data and IEC Program Memory (Momentum),

p. 161

Structure of a Momentum CPU memory (simplified representation):

Note: Also note the PLC-independent possibilities for memory optimization (See
General Information on Memory Optimization, p. 118).

LL984 program memory

Expansion Size

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

LL984 operating system

Operating system

EXEC file
M1Vxxx.bin
M1IECxxx.bin
M1EVxxx.bin
M1EWIxxx

Peer Cop configuration, etc.
Configuration

PLC Memory and optimization

160 840 USE 503 00 October 2002

Selecting Optimal IEC Zone

Introduction It is not possible to use IEC and LL984 jointly in Momentum.

Using IEC EXEC file assignment during IEC use:

Using LL984 EXEC file assignment during LL984 use:

171 CCS M1IECxxx M1EWIxxx

760 00 x -

760 10 x -

780 10 x -

960 30 - x

980 30 - x

171 CCS M1Vxxx M1EVxxx

700 10 x -

700/780 00 x -

760 00 x -

760 10 x -

780 10 x -

960 20 - x

960 30 - x

980 20 - x

980 30 - x

PLC Memory and optimization

840 USE 503 00 October 2002 161

Harmonizing the Zones for Global Data and IEC Program Memory (Momentum)

Introduction The logic zone for the total IEC memory is made up of two zones.
l IEC Program Memory

l comprising the EFB codes,
l the program codes,
l the section data,
l the DFB specimen data,
l the block links,
l possibly data from online changes,
l possibly animation data etc.

l Global Data
l comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.
Harmonizing the Zones for Global data and IEC Program Memory (Momentum 171
CCS 760 00-IEC):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Peer Cop configuration, etc.

Program
memory

Configuration in
PLC Selection
dialog

IEC
total
memory

Configuration

PLC Memory and optimization

162 840 USE 503 00 October 2002

Size of the IEC
Program Memory
Zone

The settings for the IEC user program zone are available in Online → Memory
statistics... → Memory statistics in the Configured text box. This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

Size of the Zone
for Global Data

The zone for global data (unlocated variables and block links) is calculated using the
following formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are two possible reasons for an error message, saying that the user program
is too large for the PLC memory, appearing while downloading the program onto the
PLC:
1. The memory is currently too small.
2. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).

PLC Memory and optimization

840 USE 503 00 October 2002 163

6.7 Memory optimization for Atrium CPUs

At a Glance

Overview This Section describes the memory optimization for Atrium CPUs.

What’s in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Atrium CPUs 164

Harmonizing IEC Zone and LL984 Zone 166

Harmonizing the Zones for Global Data and IEC Program Memory (Atrium) 171

PLC Memory and optimization

164 840 USE 503 00 October 2002

General Information on Memory Optimization for Atrium CPUs

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configurator
in the configurations overview in the PLC zone. The memory size is given in nodes
for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

PLC Memory and optimization

840 USE 503 00 October 2002 165

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
l Harmonizing IEC Zone and LL984 Zone, p. 166
l Harmonizing the Zones for Global Data and IEC Program Memory (Atrium),

p. 171

Structure of the Atrium CPU Memory (simplified representation):

Note: Also note the PLC-independent possibilities for memory optimization (See
General Information on Memory Optimization, p. 118).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

Operating system

EXEC file
AI3Vxxxx.bin
AI5Vxxxx.bin

LL984 operating system

IEC operating system

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

IEC
total
memory

Configuration

PLC Memory and optimization

166 840 USE 503 00 October 2002

Harmonizing IEC Zone and LL984 Zone

Introduction The EXEC files required for the CPUs of the Atrium family contain the operating
systems for IEC and LL984 (see also Installation Instructions).

When using the Atrium 180 CCO 121 01, load the EXEC file "AI3Vxxxx.bin".

When using the Atrium 180 CCO 241 01and 180 CCO 241 11 load the EXEC file
"AI5Vxxxx.bin".

The sizes of the logic zones for IEC and LL984 should be harmonized with each
other. You can define the size of both zones in Project → PLC Configuration →
PLC Selection.

Depending on the size you select for the IEC zone, zones will be reserved in the
program memory of the PLC for IEC and/or LL984 programs. Therefore, if you
define a combined IEC and LL984 zone and then only use one of the two language
types in the user program, the program memory will not be used optimally.
Therefore, decide which languages you want to use:
l Exclusive Use of IEC, p. 167
l Exclusive Use of LL984, p. 168
l Joint Use of IEC and LL984, p. 169

PLC Memory and optimization

840 USE 503 00 October 2002 167

Exclusive Use of
IEC

If you require exclusive use of the IEC, select in Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the entry Enable and drag
the total IEC memory slider to the right hand margin (highest value). This will
completely switch off the LL984 zone and the entire logic zone will be made
available for the IEC user program.
Structure of the Atrium CPU memory with exclusive use of IEC:

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

ASCII messages, Peer Cop,
Ethernet, etc.

IEC
total
memory

Configuration

PLC Memory and optimization

168 840 USE 503 00 October 2002

Exclusive Use of
LL984

If you require exclusive use of LL984, select from Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the Disable entry. This will
completely switch off the IEC zone and the entire logic zone will be made available
for the LL984 user program.
Structure of the Atrium CPU memory with exclusive use of LL984:

LL984 program memory

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

ASCII messages, Peer Cop,
Ethernet, etc.

PLC Memory and optimization

840 USE 503 00 October 2002 169

Joint Use of IEC
and LL984

When using IEC and LL984 jointly, you should harmonize the sizes of both zones
with each other.

By setting the total IEC memory size and Global Data you can automatically
determine the size of the total IEC memory, and also the available space for LL984
data (user program).

The size of the available memory for LL984 user programs is calculated using the
following formula:

LL984 zone = available LL984 nodes - total IEC memory

When performing this calculation, it must however be ensured that the size of the
LL984 zone is node-oriented and the remaining instructions are kilobyte-oriented.

To set the total IEC memory, select from Project → PLC Configuration → PLC
selection in the IEC Operating System list box, the Enable entry. The IEC zone is
now enabled and you can enter the required memory size in the Total IEC Memory
text box. The memory size is given in kilobytes.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory (Atrium), p. 171.

PLC Memory and optimization

170 840 USE 503 00 October 2002

Structure of the Atrium CPU Memory with joint use of IEC and LL984:

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The logic zone is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory (Atrium), p. 171).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration

PLC Memory and optimization

840 USE 503 00 October 2002 171

Harmonizing the Zones for Global Data and IEC Program Memory (Atrium)

Introduction The fixed total IEC memory (see chapter Harmonizing IEC Zone and LL984 Zone,
p. 166) is made up of two zones.
l IEC Program Memory

l comprising the EFB codes,
l the program codes,
l the section data,
l the DFB specimen data,
l the block links,
l possibly data from online changes,
l possibly animation data etc.

l Global Data
l comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.
Harmonizing the Zones for Global Data and IEC Program Memory (Atrium):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

Configuration
in PLC Selection
dialog

IEC
total
memory

Configuration

PLC Memory and optimization

172 840 USE 503 00 October 2002

Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IEC zone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, since hardly any memory is needed for global data.

Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The total IEC memory size is too small (see Chapter Harmonizing IEC Zone and

LL984 Zone, p. 166).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).

840 USE 503 00 October 2002 173

7
Function Block language FBD

At a Glance

Overview This Chapter describes the Function Block language FBD which conforms to IEC
1131.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

7.1 General information about FBD Function Block 175

7.2 FBD Function Block objects 177

7.3 Working with the FBD Function Block langauge 185

7.4 Code generation with the FBD Function Block language 190

7.5 Online functions of the FBD Function Block language 192

7.6 Creating a program with the FBD Function Block language 195

Function Block language FBD

174 840 USE 503 00 October 2002

Function Block language FBD

840 USE 503 00 October 2002 175

7.1 General information about FBD Function Block

Function Block language FBD

176 840 USE 503 00 October 2002

General information on Function Block language FBD

At a Glance The objects of the programming language FBD (Function Block Diagram) help to
divide a section into a number of:
l EFBs (Elementary Functions and Elementary Function Blocks) (See EFB,

p. 178),
l DFBs (Derived Function Blocks) (See DFB, p. 180) and
l UDEFBs (User-defined Functions and Function Blocks) (See UDEFB, p. 181).
These objects, combined under the name FFBs, can be linked with each other by:
l Links (See Link, p. 182) or
l Current parameters (See Actual parameters, p. 182).

Expansive logic can also be placed in the FBD section in the form of macros (see
also Macros, p. 455).

Theoretically, each section can contain as many FFBs and also as many inputs and
outputs as required. However, it is advisable to subdivide a whole program in logic
units, that is to say in different sections.

Comments can be provided for the logic of the section with text objects (see Text
Object, p. 184).

Processing
sequence

The processing sequence of the individual FFBs in an FBD section is determined by
the data flow within the section (see also FFB Execution Order, p. 187).

Editing with the
keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the FBD and SFC Editor, p. 768)

IEC conformity For a description of the IEC conformity of the FBD programming language see IEC
conformity, p. 779.

Function Block language FBD

840 USE 503 00 October 2002 177

7.2 FBD Function Block objects

At a Glance

Overview This section describes the FBD Function Block objects.

What’s in this
Section?

This section contains the following topics:

Topic Page

Functions and Function Blocks (FFBs) 178

Link 182

Actual parameters 182

Text Object 184

Function Block language FBD

178 840 USE 503 00 October 2002

Functions and Function Blocks (FFBs)

Introduction FFB is the generic term for:
l EFB (Elementary Function and Elementary Function Block) (See EFB, p. 178)
l DFB (Derived Function Block) (See DFB, p. 180)
l UDEFB (Derived Elementary Function and Derived Elementary Function Block)

(See UDEFB, p. 181)

EFB EFB is the generic term for:
l Elementary Function (See Elementary Function, p. 178)
l Elementary Function Block (See Elementary Function Block, p. 179)
EFBs are functions and function blocks that are available in Concept in the form of
libraries. The logic of EFBs is built in C programming language and cannot be
changed in the FBD editor.

Elementary
Function

Functions have no internal conditions. If the input values are the same, the value at
the output is the same for all executions of the function. E.g. the addition of two
values gives the same result at every execution.

An Elementary Function is represented graphically as a frame with inputs and
outputs. The inputs are always represented on the left and the outputs always on the
right of the frame. The name of the function, that is the function type, is displayed in
the center of the frame. The function counter is displayed above the frame.

The function counter cannot be changed and always has an .n.m. structure.
.n = current section number
.m = current function number

Functions are only executed in FBD if the input EN=1 or if the input EN is grayed out
(see also EN and ENO, p. 181).

Elementary Function

ADD_DINT

.6.5

Function Block language FBD

840 USE 503 00 October 2002 179

Elementary
Function Block

Function blocks have internal conditions. If the inputs have the same values, the
value at the output at every execution is another value. E.g. with a counter, the value
on the output is incremented.
A function block is represented graphically as a frame with inputs and outputs. The
inputs are always represented on the left and the outputs always on the right of the
frame. The name of the function block, that is the function block type, is displayed in
the center of the frame. The instance name is displayed above the frame. The
instance name serves as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m
FBI = Function Block Instance
n = Section number (current number)
m = Number of the FFB object in the section (current number)

The instance name can be edited in the Object → Properties dialog box of the
function block. The instance name must be unique throughout the whole project and
is not case sensitive. If the name entered already exists, you will be warned and you
will have to choose another name. The instance name must correspond to the IEC
name conventions, otherwise an error message occurs.

Function blocks are only executed in FBD if the input EN=1 or if the input EN is
grayed out (related topics EN and ENO, p. 181).

Elementary Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
menu command Options → Preferences → IEC Extensions... → Allow leading
digits in identifiers will enable this.

CU

R

PV

Q

CV

CTU_DINT

FBI_3_6

Function Block language FBD

180 840 USE 503 00 October 2002

DFB Derived Function Blocks (DFBs) are function blocks that have been defined in
Concept DFB.

With DFBs, there is no distinction between functions and function blocks. They are
always treated as function blocks regardless of their internal structure.

A DFB is represented graphically as a frame with double vertical lines and with
inputs and outputs. The inputs are always represented on the left and the outputs
always on the right of the frame. The DFB name is displayed centrally within the
frame. The instance name is displayed above the frame. The instance name serves
as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m
FBI = Function Block Instance
n = Section number (current number)
m = Number of the FFB object in the section (current number)

The instance name can be edited in the Object → Properties dialog box of the DFB.
The instance name must be unique throughout the whole project and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must correspond to the IEC name
conventions, otherwise an error message occurs.

Derived function blocks are only executed in FBD if the input EN=1 or if the input EN
is grayed out (related topics EN and ENO, p. 181).

Derived Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
menu command Options → Preferences → IEC Extensions... → Allow leading
digits in identifiers will enable this.

IN1

IN2

IN3

OUT1

OUT2

EXAMP

FBI_3_7

Function Block language FBD

840 USE 503 00 October 2002 181

UDEFB UDEFB is the generic term for:
l User-defined Elementary Function
l User-defined Elementary Function Block

UDEFBs are functions and function blocks that have been programmed with
Concept EFB in C++ programming language and are available in Concept in the
form of libraries.

In Concept, there is no functional difference between UDEFBs and EFBs.

EN and ENO With all FFBs, an EN input and an ENO output can be configured.

The configuration of EN and ENO is switched on or off in the FFB Properties dialog
box. The dialog box can be called up with the Objects → Properties... menu
command or by double-clicking on the FFB.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is automatically set to "0" in this case.

If the value of EN is equal to "1", when the FFB is called up, the algorithms which
are defined by the FFD will be executed. After successful execution of these
algorithms, the value of ENO is automatically set to "1". If an error occurs during
execution of these algorithms, ENO will be set to "0".

The output behavior of the FFBs in FBD does not depend on whether the FFBs are
called up without EN/ENO or with EN=1.

Function Block language FBD

182 840 USE 503 00 October 2002

Link

Description Links are connections between FFBs.

Several links can be connected with one FFB output. The link points are identified
by a filled-in circle.

Data Types The data types of the inputs/outputs to be linked must be the same.

Creating Links Links can be created using Objects → Link.

Editing Links Links can be edited in select mode. An overlap with other objects is permitted.

Configuring
Loops

No loop can be configured with links because in this case, the execution order in the
section cannot be determined uniquely. Loops must be resolved with actual
parameters (see Configuring Loops, p. 189).

Actual parameters

At a Glance In the program runtime, the values from the process or from other actual parameters
are transferred to the FFB over the actual parameters and then re-emitted after
processing.
These actual parameters can be:
l direct addresses (See Direct addresses, p. 39)
l Located variables (See Variables, p. 36)
l Unlocated variable (See Variables, p. 36)
l Constants (See Constant variables, p. 37)
l Literals (See Literals (values), p. 38)

Function Block language FBD

840 USE 503 00 October 2002 183

Direct addresses The information on/display of direct addresses can be given in various formats. The
display format is set in the dialog box Options → Preferences → Common....
Setting the display format has no impact on the entry format, i.e. direct addresses
can be entered in any format.

The following address formats are possible:
l Standard format (400001)

The five-character address comes directly after the first digit (the Reference).
l Separator format (4:00001)

The first digit (the Reference) is separated from the following five-character
address by a colon (:).

l Compact format (4:1)
The first digit (the Reference) is separated from the following address by a colon
(:), and the leading zeros of the address are not given.

l IEC format (QW1)
In first place, there is an IEC identifier, followed by the five-character address.
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

Data types The data type of the actual parameter must match the data type of the input/output.
The only exceptions are generic inputs/outputs, of which the data type is determined
by the formal parameter. If all actual parameters consist of literals, a suitable data
type is selected for the Function Block.

Initial values FFBs, which use actual parameters on the inputs that have not yet received any
value assignment, work with the initial values of these actual parameters.

Unconnected
inputs

Note: Unconnected FFB inputs are specified as "0" by default.

Function Block language FBD

184 840 USE 503 00 October 2002

Text Object

At a Glance Text can be positioned in the form of text objects using FBD Function Block
language. The size of these text objects depends on the length of the text. The size
of the object, depending on the size of the text, can be extended vertically and
horizontally to fill further grid units. Text objects may not overlap with FFBs; however
they can overlap with links.

Memory space Text objects occupy no memory space on the PLC because the text is not
downloaded onto the PLC.

Function Block language FBD

840 USE 503 00 October 2002 185

7.3 Working with the FBD Function Block language

At a Glance

Overview This section describes working with the FBD Function Block object language.

What’s in this
Section?

This section contains the following topics:

Topic Page

Positioning Functions and Function Blocks 186

FFB Execution Order 187

Configuring Loops 189

Function Block language FBD

186 840 USE 503 00 October 2002

Positioning Functions and Function Blocks

Selecting FFBs Using Objects → Select FFB... you can open a dialog for selecting FFBs. This
dialog is modeless, that is, it is not automatically closed once an FFB is positioned,
but remains open until you close it. If you have several FBD sections open, and
invoke the dialog, only one dialog box is opened that is available for all sections. The
dialog box is not available for any other sections (non-FBD editor). If the FBD
sections are changed into icons (minimize window), the dialog box is closed. If one
of the FBD section icons is called up again, the dialog box is automatically re-
opened.

The first time Concept is started the FFB is displayed oriented to the library. This
means that, when selecting an FFB, the Library command button must first of all be
used to select the corresponding library. Then you can select the corresponding
Group in the list box. Now, you can select the required FFB from the EFB type list.

If you do not know which library/group the FFB required is in, you can invoke an
FFB-oriented dialog with the Sorted by FFB command button. This contains all
FFBs of all libraries and groups in an alphabetical list.

After each subsequent project start, the view you selected appears.

Once the FFB has been selected, its position in the section must be selected. The
cursor becomes a small FFB and the cross shows the position (upper left corner of
the FFB) where the FFB is positioned. The FFB is positioned by clicking on the left-
hand mouse button.

Positioning FFBs
(Functions and
Function Blocks)

In the FBD function block language editor, the window appears with a logic grid.
FFBs (See Functions and Function Blocks (FFBs), p. 178) are aligned in this grid as
they are positioned. If FFBs are positioned outside of the section frame or if there is
overlapping with another FFB, an error warning will appear and the FFB will not be
positioned. Actual parameters may overlap another object when being positioned at
an FFB input/output, but they must not go outside the limits of the section frame. If
a link to another FFB is established, this link is checked. If this link is not permitted,
a message is received, and the link is not established. When links are created,
overlaps and crossing with other links and FFBs are permitted. If an FFB is selected,
the comment relating to it is displayed in the first column of the status line. If an
actual parameter is selected, its name and, if applicable, its direct address, its I/O
map and its comment are displayed in the first column of the status line.

Function Block language FBD

840 USE 503 00 October 2002 187

Change FFB
Type

With the Objects → Replace FFBs... menu command the FFBs already positioned
in the section can be replaced with FFBs of another type (e.g. an AND with an OR).
The variables given to the FFB remain if the data type and position of the inputs/
outputs are the same as the "old" and the new FFB.

FFB Execution Order

Introduction The execution order is first determined by the order when positioning the FFB. If the
FFBs are then linked graphically, the execution order is determined by the data flow.

Display FFB
Execution Order.

The execution order can also be displayed with the Objects → FFB Execution
Order menu command. This is represented by the execution number (number in
brackets behind the instance name or function counter).
Display FFB Execution Order

Reverse FFB
Execution Order

The execution order of two FFBs can be specifically switched afterwards with the
menu command Objects → Reverse FFB Execution Order, but only if the rules
regarding data flow are not broken.

Note: FFBs with inputs / outputs of the ANY data type (generic FFBs) cannot be
replaced.

ADD_DINT

VALUE1

.6.5 (1)

MUL_DINT

RESULT

.6.6 (3)
VALUE2

SUB_DINT

VALUE3

.6.7 (2)

VALUE4

Function Block language FBD

188 840 USE 503 00 October 2002

Switching the
Execution Order
of Two Networks
within One Loop

The swap can be made by switching the two FFBs that are linked by the feedback
variable of the loop.

Changing the
Execution Order
of FFBs
Executed
According to the
Positioning
Order

The switching operation permits the creation of a different, desired order (possibly
step by step if several FFBs are involved).

AND_BOOL

A

.6.3 (1)

AND_BOOL

B

.6.4 (2)

AND_BOOL

B

.6.7 (3)

AND_BOOL

A

.6.6 (4)

ADD_INT

C

.6.9 (2)

MULL_INT

D

.6.8 (1)

x[1]

x[3]

Function Block language FBD

840 USE 503 00 October 2002 189

Configuring Loops

Non-permitted
Loops

Configuring loops exclusively via links is not permitted, as it is not possible to
uniquely set the data flow (the output of one FFB is the input of the next FFB, and
the output of this one is the input of the first).
Non-permitted Loops via Links

Resolution using
an Actual
Parameter

This type of logic must be resolved using actual parameters so that the data flow can
be determined uniquely.
Resolved loop using an actual parameter: Variant 1

Resolved loop using an actual parameter: Variant 2

Resolution using
Several Actual
Parameters

Loops using several actual parameters are also allowed. With such loops, the
execution order can later be influenced by executing – possibly several times – the
menu command Objects → Reverse FFB Execution Order (see also FFB
Execution Order, p. 187).
Loop using several actual parameters

OR_BOOL

IN1

.6.5

AND_BOOL

.6.6

IN2

OR_BOOL

IN1

.6.5

AND_BOOL

.6.6

IN2OUT1

OUT1

OR_BOOL

IN1

.6.5 (2)

AND_BOOL

.6.6 (1)

IN2

OUT2OUT2

OR_BOOL

IN1

.6.5 (1)

AND_BOOL

.6.6 (2)

IN2

OUT2OUT2
OUT1

OUT1

Function Block language FBD

190 840 USE 503 00 October 2002

7.4 Code generation with the FBD Function Block
language

Function Block language FBD

840 USE 503 00 October 2002 191

Code Generation Options

Introduction Using the Project → Code Generation Options menu command, you can define
options for code generation.

Include
Diagnosis
Information

If the Include Diagnosis information check box is checked, additional information
for the process diagnosis (e.g. Transition Diagnosis (See Transition diagnosis,
p. 277), diagnosis codes for diagnosis function blocks with extended diagnosis,
such as e.g. XACT, XLOCK etc.) will be produced during code generation. This
process diagnosis can be evaluated with MonitorPro or FactoryLink, for example.

Fastest Code
(Restricted
Checking)

If you check the Fastest code (Restricted Checking) check box, a runtime-
optimized code is generated. This runtime optimization is achieved by realizing the
integer arithmetic (e.g. "+" or "-") using simple CPU commands instead of EFB
invocations.

CPU commands are much quicker than EFB invocations, but they do not generate
any error messages, such as, for example, arithmetic or array overflow. This option
should only be used when you have ensured that the program is free of arithmetic
errors.

If Fastest Code (Restricted Checking) was selected, the addition IN1 + 1 is solved
with the "add" CPU command. The code is now quicker than if the ADD_INT EFB
were to be invoked. However, no runtime error is generated if "IN1" is 32767. In this
case, "OUT1" would overrun from 32767 to -32768!

Function Block language FBD

192 840 USE 503 00 October 2002

7.5 Online functions of the FBD Function Block
language

Function Block language FBD

840 USE 503 00 October 2002 193

Online Functions

Introduction There are two animation modes available in the FBD editor:
l Animation of binary variables and links
l Animation of selected objects
These modes are also available on display of a DFB item (command button
Refine... in the dialog box Function block: xxx).

Animation of
binary variables
and links

The animation of binary variables and links is activated with the menu command
Online → Animate Booleans.

In this mode, the current signal status of binary variables, direct addresses in the 0x
and 1x range and binary links is displayed in the Editor window.

Animation of
selected objects

The animation of the selected objects is activated with the menu command Online
→ Animate selected.

In this mode, the current signal status of the selected links, variables, multi-element
variables and literals are displayed in the Editor window.

If a numerical value is selected on an input/output, the name of the variable, its direct
address and I/O assignment (if available) and its comment will be displayed in the
status bar.

Note: If the animated section is used as a transition section for SFC and the
transition (and therefore also the transition section) is not processed, the status
DISABLED appears in the animated transition section.

Note: If all variables/links of the section need to be animated, the whole section
can be selected with CTRL+A and then Online → Animate selected (CTRL+W)
all variables and links of the section will be animated.

Note: The selected objects remain selected even after "Animate selected" has
been selected again, in order to keep these for a further reading, and/or to be able
to easily modify the list of objects.

Function Block language FBD

194 840 USE 503 00 October 2002

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in the Online help (Tip:
Search the online help for the index reference "Colors").

Function Block language FBD

840 USE 503 00 October 2002 195

7.6 Creating a program with the FBD Function Block
language

Function Block language FBD

196 840 USE 503 00 October 2002

Creating a Program in the FBD Function Block Language

Introduction The following description contains an example for creating a program in the function
block language (FBD). The creation of a program in the function block language is
divided into 2 main steps:

Creating a
Section

The procedure for creating a section is as follows:

Step Action

1 Creating a Section (See Creating a Section, p. 196)

2 Creating the Logic (See Creating the Logic, p. 197)

Step Action

1 Using the File → New Section... menu command, create a new section and
enter a section name.

Note: The section name (max. 32 characters) is not case-sensitive and must be
unique within the whole project. If the name entered already exists, you will be
warned and you will have to choose a different name. The section name must
comply with the IEC name conventions, otherwise an error message appears.

Note:In compliance with IEC1131-3 only letters are permitted as the first
character of names. However, if you wish to use numbers as the first character,
you can enable this using the Options → Preferences → IEC Extensions... →
Allow Leading Digits in Identifiers menu command.

Function Block language FBD

840 USE 503 00 October 2002 197

Creating the
Logic

The procedure for creating the logic is as follows:

Step Action

1 To insert an FFB into the section, select the Objects → Select FFB... menu
command.
Response: The FFB dialog box from the library is opened.

2 In this dialog box you can select a library and an FFB from it by using the
Library... command button. You can, however, also display the DFBs that you
created and select one of them using the DFB command button.

3 Place the selected FFB in the section.

4 When all FFBs have been placed, close the dialog box with Close.

5 Activate the selection mode with Objects → Select Mode, click on the FFB and
move the FFBs to the desired position.

6 Activate the link mode with Objects → Link and connect the FFBs.

7 Then re-activate select mode with Objects → Select Mode and double-click on
one of the unconnected inputs/outputs.
Response: The Connect FFB dialog box opens, where an actual parameter can
be allocated to the input/output.

Close

DFB Type

LIGHTSS
NEST1
NEST2

FFBs in IEC Library

Group

FFB sorted...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB Type

AND_BOOL
AND_BYTE
AND_WORD
NOT_BOOL
NOT_BYTE
NOT_WORD
OR_BOOL
OR_BYTE

Help on Type

Library...

Help

DFB

LampTest1 Lookup…

Connect with

Variable Literal

Name

Connecting FFB: .2.15 (AND_BOOL)

Input: IN1 (BOOL)

Cancel HelpOK

Direct Address

Variable Declaration...

Inverted

Function Block language FBD

198 840 USE 503 00 October 2002

8 Depending on the program logic you can allocate the following to the input/
output:
l Variable

l Located variable
You can allocate a hardware input/output signal to the input/output of the
FFB using a located variable.
The name of the variable is shown at the input/output in the editor window.

l Unlocated variable
You can use the unlocated variable allocated to the input/output of the
FFB as a discrete, i.e. when resolving loops, or when transferring values
between different sections.
The name of the variable is shown at the input/output in the editor window.

l Constant
You can allocate a constant to the input of the FFB. The constant can be
transferred to other sections. You determine the value of the constant in
the variable editor.
The name of the constant is shown at the input in the editor window.

l Literal
You can allocate a literal to the input, i.e. directly allocate a value to the input/
output.
The value is shown at the input in the editor window.

l Direct address
You can allocate a hardware input/output signal to the input/output using an
address.
The address is shown at the input/output in the editor window.

Note: For an example for invocation of multi element variables see Calling
Derived Data Types, p. 524.
Note: Unconnected FFB inputs are specified as "0" by default.

9 Save the FBD section with the menu command File → Save Project .

Step Action

840 USE 503 00 October 2002 199

8
Ladder Diagram LD

At a Glance

Overview This Chapter describes the Ladder Diagram LD which conforms to IEC 1131.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

8.1 General information about Ladder Diagram LD 201

8.2 Objects in Ladder Diagram LD 204

8.3 Working with the LD Ladder Diagram 218

8.4 Code generation with LD Ladder Diagram 223

8.5 Online functions with the LD Ladder Diagram 225

8.6 Creating a program withLD Ladder Diagram 228

Ladder Diagram LD

200 840 USE 503 00 October 2002

Ladder Diagram LD

840 USE 503 00 October 2002 201

8.1 General information about Ladder Diagram LD

Ladder Diagram LD

202 840 USE 503 00 October 2002

General Information about the LD Ladder Diagram Language

Introduction This section describes the Ladder Diagram (LD) according to IEC 1131-3.

The structure of a LD section corresponds to a rung for relay switching. The window
in the LD editor is shaded with a logic grid, on the left side of which there is the so-
called left power rail. This left power rail corresponds to the phase (L ladder) of a
rung. With LD programming, in the same way as in a rung, only the LD objects
(contacts, coils) which are linked to a power supply, that is to say connected with the
left power rail, are "processed". The right power rail, which corresponds to the
neutral ladder, is not shown optically. However, all coils and FFB outputs are linked
with it internally and this creates a power flow.

Objects The objects of the programming language LD (Ladder Diagram) help to divide a
section into a number of:
l Contacts (See Contacts, p. 205),
l Coils (See Coils, p. 206) and
l FFBs (Functions and Function Blocks) (See Functions and Function Blocks

(FFBs), p. 209).
These objects can be linked with each other through:
l Links (See Link, p. 214) or
l Actual Parameters (See Actual Parameters, p. 215).

Expansive logic can also be positioned in the LD section in the form of macros
(related topics Macros, p. 455).

Theoretically, each section can contain as many FFBs and also as many inputs and
outputs as required. It is therefore advisable to subdivide a whole program into
logical units, that is to say into different sections.

Comments can be provided for the logic of the section with text objects (related
topics Text object, p. 217).

Processing
Sequence

The process sequence of the individual objects in a LD section is determined by the
data flow within the section. Networks connected to the left power rail are processed
from top to bottom (link with the left power rail). Networks that are independent of
each other within the section are processed in order of positioning (from top to
bottom) (related topics Execution sequence, p. 221).

Ladder Diagram LD

840 USE 503 00 October 2002 203

Editing with the
Keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (related topics Shortcut keys in the LD-Editor, p. 771).
In order to make editing with the keyboard easier, you can specify the number of
columns per section in the CONCEPT.INI (See INI Settings for the LD Section,
p. 1035) file, after which an automatic carriage return should appear when you are
expanding a rung. This means that when you reach the last column, the next object
is automatically placed in the second column of the next row. Objects on different
rows are automatically linked, i.e. the objects are generated within a common rung.

IEC Conformity For a description of the IEC conformity of the LD programming language see IEC
conformity, p. 779.

Ladder Diagram LD

204 840 USE 503 00 October 2002

8.2 Objects in Ladder Diagram LD

At a Glance

Overview This section describes the objects in LD Ladder Diagram.

What’s in this
Section?

This section contains the following topics:

Topic Page

Contacts 205

Coils 206

Functions and Function Blocks (FFBs) 209

Link 214

Actual Parameters 215

Text object 217

Ladder Diagram LD

840 USE 503 00 October 2002 205

Contacts

At a Glance A contact is an LD element that transfers a status on the horizontal link to its right
side. This status comes from the boolean AND link of the status of the horizontal link
on the left side, with the status of the relevant variable/direct address.

A contact does not change the value of the relevant variable/direct address.

The following contacts are available:
l Closer (See Closer, p. 205)
l Opener (See Opener, p. 205)
l Contact for detection of positive transitions (See Contact for detection of positive

transitions, p. 205)
l Contact for detection of negative transitions (See Contact for detection of

negative transitions, p. 206)

Closer On closing, the status of the left link is copied onto the right link, if the status of the
relevant boolean variable is ON. Otherwise, the status of the right link is OFF.

Closer

Opener On opening, the status of the left link is copied onto the right link, if the status of the
relevant boolean variable is OFF. Otherwise, the status of the right link is OFF.

Opener

Contact for
detection of
positive
transitions

With contacts for detection of positive transitions, the right link for a program cycle
is ON if a transfer of the relevant boolean variable is made from OFF to ON and the
status of the left link is ON at the same time. Otherwise, the status of the right link is
OFF.

Contact for detection of positive transitions

IN1

IN1

IN1

P

Ladder Diagram LD

206 840 USE 503 00 October 2002

Contact for
detection of
negative
transitions

With contacts for detection of negative transitions, the right link for a program cycle
is ON if a transfer of the relevant boolean variable is made from ON to OFF and the
status of the left link is ON at the same time. Otherwise, the status of the right link is
OFF.

Contact for detection of negative transitions

Coils

At a Glance A coil is an LD element which transfers the status of the horizontal link on the left
side, unchanged, to the horizontal link on the right side. The status is saved in the
relevant variable/direct address.

Start behavior of
coils

In the start behavior of PLCs there is a distinction between cold starts and warm
starts:
l Cold start

Following a cold start (load the program with Online → Download) all variables
(independent of type) are set to "0" or, if available, their initial value.

l Warm start
In a warm start (stop and start the program or Online → Download changes)
different start behaviors are valid for located variables/direct addresses and
unlocated variables:
l Located variables/direct addresses

In a warm start all coils (0x registers) are set to "0" or, if available, their initial
value.

l Unlocated variable
In a warm start all unlocated variables retain their current value (storing
behavior).

This different behavior in a warm start leads to particular characteristics in the warm
start behavior of LD objects "Coil – set" and "Coil – reset". Warm start behavior is
dependent on the variable type used (storing behavior in use of unlocated variables;
non storing behavior in use of located variables/direct addresses)

If a buffered coil is required with a located variable or with direct addresses, the RS
or SR Function Block from the IEC block library should be used.

IN1

N

Ladder Diagram LD

840 USE 503 00 October 2002 207

Available coils The following coils are available:
l Coil (See Coil, p. 207)
l Coil - negated (See Coil - negated, p. 207)
l Coil - set (See Coil - set, p. 208)
l Coil - reset (See Coil - reset, p. 208)
l Coil – positive edge (See Coil – positive edge, p. 207)
l Coil – negative edge (See Coil – negative edge, p. 208)

Coil With coils, the status of the left link is copied onto the relevant Boolean variable and
the right link.
Normally, coils follow contacts or EFBs, but they can also be followed by contacts.

Coil

Coil - negated With negated coils, the status of the left link is copied onto the right link. The inverted
status of the left link is copied onto the relevant Boolean variable. If the left link is
OFF, then the right link will also be OFF and the relevant variable will be ON.

Coil - negated

Coil – positive
edge

With coils for detection of positive transfers, the status of the left link is copied onto
the right link. The relevant Boolean variable is ON for a program cycle, if a transfer
of the left link from OFF to ON is made.

Coil – positive edge

OUTIN1

OUTIN1

OUTIN1

P

Ladder Diagram LD

208 840 USE 503 00 October 2002

Coil – negative
edge

With coils for detection of negative transfers, the status of the left link is copied onto
the right link. The relevant Boolean variable is ON for a program cycle, if a transfer
of the left link from ON to OFF is made.

Coil – negative edge

Coil - set With "set coils", the status of the left link is copied onto the right link. The relevant
Boolean variable is set to ON status, if the left link is in ON status, otherwise it
remains unchanged. The relevant Boolean variable can only be reset through the
"reset coil".

Coil - set

Coil - reset With "reset coils", the status of the left link is copied onto the right link. The relevant
Boolean variable is set to OFF status, if the left link is in ON status, otherwise it
remains unchanged. The relevant Boolean variable can only be set through the "set
coil".

Coil - reset

OUTIN1

N

OUTIN1

S

OUTIN1

R

Ladder Diagram LD

840 USE 503 00 October 2002 209

Functions and Function Blocks (FFBs)

Introduction FFB is the generic term for:
l EFB (Elementary Function and Elementary Function Block) (See EFB, p. 209)
l DFB (Derived Function Block) (See DFB, p. 211)
l UDEFB (Derived Elementary Function and Derived Elementary Function Block)

(See UDEFB, p. 212)

EFB EFB is the generic term for:
l Elementary Function (See Elementary Function, p. 209)
l Elementary Function Block (See Elementary Function Block, p. 210)
EFBs are functions and function blocks that are available in Concept in the form of
libraries. The logic of EFBs is built in C programming language and cannot be
changed in the FBD editor.

Elementary
Function

Functions have no internal conditions. If the input values are the same, the value at
the output is the same for all executions of the function. E.g. the addition of two
values gives the same result at every execution.

An Elementary Function is represented graphically as a frame with inputs and
outputs. The inputs are always represented on the left and the outputs always on the
right of the frame. The name of the function, that is the function type, is displayed in
the center of the frame. The function counter is displayed above the frame.
The function counter cannot be changed and always has an .n.m. structure.
.n = current section number
.m = current function number

Functions are only executed if the input EN=1 or if the input EN is grayed out (see
also EN and ENO, p. 213).

Elementary Function

Note: The EFBs AND_BOOL, NOT_BOOL, OR_BOOL, R_TRIG and F_TRIG are
not available in LD. Their function is executed with contacts. The MOVE function
cannot be used with the data type BOOL.

EN

.6.6

ENO

ADD_DINT

Ladder Diagram LD

210 840 USE 503 00 October 2002

Elementary
Function Block

Function Blocks have internal conditions. If the inputs have the same values, the
value at the output at every execution is another value. E.g. with a counter, the value
on the output is incremented.
A function block is represented graphically as a frame with inputs and outputs. The
inputs are always represented on the left and the outputs always on the right of the
frame. The name of the function block, that is the function block type, is displayed in
the center of the frame. The instance name is displayed above the frame. The
instance name serves as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m
FBI = Function Block Instance
n = Section number (current number)
m = Number of the FFB object in the section (current number)

The instance name can be edited in the Properties dialog box of the function block.
The instance name must be unique throughout the whole project and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears.

Function blocks are only executed if the input EN=1 or if the input EN is grayed out
(see also EN and ENO, p. 213).

Elementary Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
Options → Preferences → IEC Extensions... → Allow leading digits in
identifiers menu command will enable this.

EN

FBI_3_6

ENO

CTU_DINT

CU

R

PV

Q

CV

Ladder Diagram LD

840 USE 503 00 October 2002 211

DFB Derived Function Blocks are function blocks that have been defined in Concept
DFB.

With DFBs, there is no distinction between functions and function blocks. They are
always treated as function blocks regardless of their internal structure.

A DFB is represented graphically as a frame with double vertical lines and with
inputs and outputs. The inputs are always represented on the left and the outputs
always on the right of the frame. The DFB name is displayed centrally within the
frame. The instance name is displayed above the frame. The instance name serves
as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m
FBI = Function Block Instance
n = Section number (current number)
m = Number of the FFB object in the section (current number)

The instance name can be edited in the Properties dialog box of the DFB. The
instance name must be unique throughout the whole project and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears.

Derived Function Blocks are only executed if the input EN=1 or if the input EN is
grayed out (see also EN and ENO, p. 213).

Derived Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
Options → Preferences → IEC Extensions... → Allow leading digits in
identifiers menu command will enable this.

BEISP

ENO

OUT1

OUT2

EN

IN1

IN2

IN3

FBI_3_7

Ladder Diagram LD

212 840 USE 503 00 October 2002

UDEFB UDEFB is the generic term for:
l User-defined Elementary Function
l User-defined Elementary Function Block

UDEFBs are functions and function blocks that have been programmed with
Concept EFB in C++ programming language and are available in Concept in the
form of libraries.

In Concept, there is no functional difference between UDEFBs and EFBs.

Editing FFBs FFBs are only edited if at least one Boolean input is linked with the left power rail. If
the FFB has no Boolean input, the EN input of the FFB must be used. If the FFB is
to be conditionally executed, the Boolean input can be pre-linked through contacts
or other FFBs.

Connection to an FFB with the left power rail:

Note: If the EN input is not linked with the left power rail, it must be deactivated in
the Properties dialog box, otherwise the FFB will never be edited.

Note: Each FFB without Boolean link to the left power rail gives rise to an error
message when downloading onto the PLC.

EN

.6.5

ENO

ADD_DINT

EN

.6.6

ENO

ADD_DINTIN1

IN2

Ladder Diagram LD

840 USE 503 00 October 2002 213

EN and ENO With all FFBs, an EN input and an ENO output can be configured.

EN and ENO configuration is switched on or off in the FFB properties dialog box.
The dialog box can be invoked with the Objects → Properties... menu command or
by double-clicking on the FFB.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is automatically set to "0" in this case.

If the value of EN is equal to "1", when the FFB is invoked, the algorithms which are
defined by the FFD will be executed. After successful execution of these algorithms,
the value of ENO is automatically set to "1". If an error occurs during execution of
these algorithms, ENO will be set to "0".

The output behavior of the FFBs does not depend on whether the FFBs are invoked
without EN/ENO or with EN=1.

Note: If the EN input is not linked with the left power rail, it must be deactivated in
the Properties dialog box, otherwise the FFB will never be edited.

Ladder Diagram LD

214 840 USE 503 00 October 2002

Link

Description Links are connections between contacts, coils and FFBs.

Several links can be connected with one contact, one coil or one FFB output. The
link points are identified with a filled circle.

Data Types The data types of the inputs/outputs to be linked must be the same.

Editing Links Links can be edited in select mode. An overlap with other objects is permitted.

Configuring
Loops

No loop can be configured with links because in this case, the execution order in the
section cannot be determined uniquely. Loops must be resolved with actual
parameters (related topics Configuring Loops, p. 189).

Horizontal Links Contacts and coils are automatically connected during positioning with a
neighboring, unconnected contact/coil that has the same vertical position. A
connection to the power rail is only established if the contact is placed nearby (also
see Defining the Contact Connection, p. 1035 in the Concept INI-Filechapter). If a
coil or a contact is positioned on an existing horizontal link, the link is automatically
separated and the contact/coil is inserted. When positioned, actual parameters may
overlap another object, but they must not go outside the limits of the section frame.
If a link to another object is established, this link is checked. If this link is not
permitted, you will receive a message and the link will not be generated.

Once objects are positioned, horizontal links with directly adjacent objects are
automatically created.

Vertical Links An exceptional link is the "vertical link". The vertical link serves as a logical OR. With
this form of the OR link, 32 inputs (contacts) and 64 outputs (coils, links) are
possible.

Note: Unconnected contacts, coils and FFB inputs are specified as "0" by default.

Ladder Diagram LD

840 USE 503 00 October 2002 215

Actual Parameters

Possible Actual
Parameters

In the program runtime, the values from the process or from other actual parameters
are transferred to the FFB via the actual parameters and then re-emitted after
processing.

Table of possible actual parameters

Element Actual Parameters

Contacts l Direct addresses (See Direct addresses, p. 39)
l Located variables (See Variables, p. 36)
l Unlocated variable (See Variables, p. 36)

Coils l Direct addresses (See Direct addresses, p. 39)
l Located variables (See Variables, p. 36)
l Unlocated variable (See Variables, p. 36)

FFB inputs l Direct addresses (See Direct addresses, p. 39)
l Located variables (See Variables, p. 36)
l Unlocated variable (See Variables, p. 36)
l Constant (See Constant variables, p. 37)
l Literals (See Literals (values), p. 38)

FFB outputs l Direct addresses (See Direct addresses, p. 39)
l Located variables (See Variables, p. 36)
l Unlocated variable (See Variables, p. 36)

Ladder Diagram LD

216 840 USE 503 00 October 2002

Direct Addresses The information on/display of direct addresses can be given in various formats. The
display format is set in the Options → Preferences → Common dialog box. Setting
the display format has no impact on the entry format, i.e. direct addresses can be
entered in any format.

The following address formats are possible:
l Standard Format (400001)

The five figure address comes directly after the first digit (the reference).
l Separator Format (4:00001)

The first digit (the reference) is separated from the five figure address that follows
by a colon (:).

l Compact format (4:1)
The first digit (the Reference) is separated from the address that follows by a
colon (:) where the leading zeros are not specified.

l IEC Format (QW1)
There is an IEC type designation in initial position, followed by the five-character
address.
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

Data Types The data type of the actual parameter must be of BOOL type with contacts and coils.
With FFB inputs/outputs, the data type of the actual parameter must match the data
type of the inputs/outputs. The only exceptions are generic FFB inputs/outputs,
whose data type is determined by the formal parameter. If all actual parameters
consist of literals, a suitable data type is selected for the function block.

Initial Values FFBs, which use actual parameters on the inputs and coils that have not yet
received a value assignment, work with the initial values of these actual parameters.

Unconnected
Inputs

Note: Unconnected contacts, coils and FFB inputs/outputs are specified as "0" by
default.

Ladder Diagram LD

840 USE 503 00 October 2002 217

Text object

At a Glance Text can be positioned in the form of text objects in the Ladder Diagram (LD). The
size of these text objects depends on the length of the text. The size of the object,
depending on the size of the text, can be extended vertically and horizontally to fill
further grid units. Text objects may not overlap with other objects; however they can
overlap with links.

Memory space Text objects occupy no memory space on the PLC because the text is not
downloaded onto the PLC.

Ladder Diagram LD

218 840 USE 503 00 October 2002

8.3 Working with the LD Ladder Diagram

At a Glance

Overview This section describes working with LD Ladder Diagram.

What’s in this
Section?

This section contains the following topics:

Topic Page

Positioning Coils, Contacts, Functions and Function Blocks 219

Execution sequence 221

Configuring Loops 221

Ladder Diagram LD

840 USE 503 00 October 2002 219

Positioning Coils, Contacts, Functions and Function Blocks

Positioning
Objects

In the LD contact plan editor, the window has a logic grid in the background. The
objects are aligned in the bars of this grid (52 x 230 fields) during positioning. With
the exception of vertical shorts, FFBs and text fields, all elements require exactly
one grid field. Objects can only be positioned within such a field. If an object is
positioned between two fields, the object is automatically placed in the nearest field.

When objects are positioned outside the section frame with another object, an error
message occurs and the object is not positioned.

When being positioned, contacts and coils are automatically linked with a directly
adjacent, unconnected contact/coil, if the contact/ coil has the same vertical
position. A link to the power rail is therefore created even if the contact is positioned
2 fields away. If contacts or coils are positioned on existing contacts or coils, the
existing ones are replaced by the current ones (only applies to same types, i.e. when
replacing coils with coils and contacts with contacts). If a coil or a contact is
positioned on an existing horizontal short, the link is automatically separated and the
contact/coil is inserted.

When positioned, actual parameters may overlap another object, but they must not
go outside the limits of the section frame. If a link to another object is established,
this link is checked. If this link is not permitted, you will receive a message and the
link will not be generated. When producing links, overlaps and crossings with other
links and objects are permitted.

If an FFB is selected, its comment is displayed in the first column of the status line.
If an actual parameter is selected, its name and, if applicable, its direct address and
its comment are displayed in the first column of the status line.

Automatic
Carriage Return

As a keyboard user, you have the possibility of determining the number of columns/
fields in the CONCEPT.INI (See Defining the Number of Columns/Fields, p. 1035)
file after which an automatic carriage return will appear during editing as soon as the
last column/field is reached. The following object is then inserted into the second
column/field and linked to the last object of the previous row. I.e. the objects are
created inside the same rung.

Ladder Diagram LD

220 840 USE 503 00 October 2002

Selecting FFBs Using Objects → Select FFB... you can open a dialog for selecting FFBs. This
dialog is modeless, which means it is not automatically closed once an FFB has
been positioned, but remains open until you close it. If you have several LD sections
open and you invoke the dialog, only one dialog box is opened and is available for
all sections. The dialog box is not available for any other sections (not LD editor). If
the LD sections are changed into symbols (Minimize window), the dialog box is
closed. If one of the LD section symbols is invoked again, the dialog box is
automatically re-opened.

The first time Concept is started, the FFB is displayed oriented to the library. This
means that to select an FFB, the corresponding library must first be selected using
the Library command button. Then you can select the corresponding group in the
Group list box. Now, you can select the required FFB from the EFB type list box.

If you do not know which library/group the FFB required is located in, you can invoke
an FFB-oriented dialog with the FFB sorted command button. This contains all
FFBs in all libraries and groups in an alphabetical list.

After each subsequent project start, the view that you select will appear.

Once the FFB has been selected, its position in the section must be selected. The
cursor becomes a small FFB and the cross shows the position (upper left corner of
the FFB) in which the FFB is placed. The FFB is positioned by clicking on the left-
hand mouse button.

Change
FFB-Type

With the Objects → Replace FFBs... menu command, the FFBs already positioned
in the section can be replaced with FFBs of another type (e.g. an AND with an OR).
The variables given to the FFB remain if the data type and position of the inputs/
outputs are the same in the "old" as the new FFB.

Change contact/
coil

Contacts and coils which are already positioned can simply be replaced. In order to
do this, select the new element and click on the one to be replaced.

Note: FFBs with inputs/outputs of the ANY data type (generic FFBs) cannot be
replaced.

Ladder Diagram LD

840 USE 503 00 October 2002 221

Execution sequence

Description The execution sequences of contacts, coils and FFBs are determined by the data
flow. This means that the coils and FFBs whose inputs have already received value
assignments will be processed first.

The execution sequence of networks which are only linked by the left power rail, is
determined by the graphic sequence (from top to bottom) in which these are
connected to the left power rail.

Configuring Loops

Non-permitted
Loops

Configuring loops exclusively via links is not permitted, as it is not possible to make
a unique specification of the data flow (the output of one FFB is the input of the next
FFB, and the output of this one is the input of the first).
Non-permitted Loops via Links

Resolution using
an Actual
Parameter

This type of logic must be resolved using actual parameters so that the data flow can
be determined uniquely.
Resolved loop using an actual parameter: Variant 1

AND_WORD

IN1

.6.5

AND_WORD

.6.5

IN2

EN ENO EN ENO

AND_WORD

.6.5

AND_WORD

.6.6

IN2

EN ENO EN ENO

IN1

OUT1

OUT1

Ladder Diagram LD

222 840 USE 503 00 October 2002

Resolved loop using an actual parameter: Variant 2

Resolution using
Several Actual
Parameters

Loops using several actual parameters are also allowed.
Loop using several actual parameters

AND_WORD

.6.5

AND_WORD

.6.6

IN2

EN ENO EN ENO

IN1 OUT1 OUT1

AND_WORD

.6.5

IN1

AND_WORD

.6.6

IN2OUT2

OUT2OUT1OUT1
EN ENO EN ENO

Ladder Diagram LD

840 USE 503 00 October 2002 223

8.4 Code generation with LD Ladder Diagram

Ladder Diagram LD

224 840 USE 503 00 October 2002

Code Generation Options

Introduction Using the Project → Code Generation Options menu command, you can define
options for code generation.

Include
Diagnosis
Information

If you check the Include Diagnosis Information check box, additional information
for the process diagnosis (e.g. transition diagnosis, diagnosis codes for diagnosis
function blocks with extended diagnosis, such as XACT, XLOCK etc.) will be created
during code generation. This process diagnosis can be evaluated with MonitorPro
or FactoryLink, for example.

Fastest Code
(Restricted
Checking)

If you check the Fastest code (Restricted Checking) check box, a runtime-
optimized code is generated. This runtime optimization is achieved by realizing the
integer arithmetic (e.g. "+" or "-") using simple CPU commands instead of EFB
invocations.

CPU commands are much quicker than EFB invocations, but they do not generate
any error messages, such as, for example, arithmetic or array overflow. This option
should only be used when you have ensured that the program is free of arithmetic
errors.

If Fastest Code (Restricted Checking) was selected, the addition IN1 + 1 is solved
with the "add" CPU command. The code is now quicker than if the ADD_INT EFB
were to be invoked. However, no runtime error is generated if "IN1" is 32767. In this
case, "OUT1" would overrun from 32767 to -32768!

Ladder Diagram LD

840 USE 503 00 October 2002 225

8.5 Online functions with the LD Ladder Diagram

Ladder Diagram LD

226 840 USE 503 00 October 2002

Online Functions

Introduction There are two animation modes available in the LD editor:
l Animation of binary variables and links
l Animation of selected objects
These modes are also available when a DFB instance is displayed (command
button Refine... in the Function Block: xxx dialog box).

Animation of
Binary Variables
and Links

The animation of binary variables and links is activated using the Online → Animate
Booleans menu command.

In this mode, the current signal status of binary variables, direct addresses in the 0x
and 1x range and binary links is displayed in the editor window.

Meaning of Colors

Note: If the animated section is used as a transition section for SFC and the
transition (and therefore also the transition section) is not processed, the status
DISABLED appears in the animated transition section.

Color Meaning

Contact, coil, input/output, link red Contact, coil, input/output, link transferring
the value 0

Left power rail, contact, coil, input/output, link
green

Left power rail, contact, coil, input/output, link
transferring the value 1

Variable highlighted in beige Variable forced

Variable highlighted in purple Variable cyclically set

The name of the multi-element variable (e.g.
motor) highlighted in color.

In the editor, a multi-element variable (e.g.
motor) is displayed, in which one or more
elements is forced or cyclically set.

The whole element name of the multi-element
variable (e.g. right.motor.on) is highlighted in
color.

In the editor, an element of a multi-element
variable (e.g. right motor on) that is forced or
cyclically set is displayed.

The name of the multi-element variable (e.g.
right.motor.on) is highlighted in color, but the
name of the element is not.

In the editor, an element of a multi-element
variable (e.g. right motor on) that is not
forced or cyclically set is displayed, but a
different element of this multi-element
variable is cyclically set or forced.

Ladder Diagram LD

840 USE 503 00 October 2002 227

Animation of
Selected Objects

The animation of the selected objects is activated with the Online → Animate
Selection menu command.

In this mode, the current signal status of the selected links, variables, multi-element
variables and literals is displayed in the editor window.

If a numerical value is selected on an input/output, the name of the variable, its direct
address and I/O mapping (if existent) and its comment will be displayed in the status
bar.

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in the Online help Tip:
Search the online hlep for the index reference "Colors").

Note: If you want to animate all variables/links in the section, you can select the
whole section using CTRL+A and then animate all variables and links in the section
using Online → Animate Selection (CTRL+W).

Note: The selected objects remain selected even after "animate selection" has
been selected again, to retain these objects for a further reading, and/or to be able
to easily modify the list of objects.

Ladder Diagram LD

228 840 USE 503 00 October 2002

8.6 Creating a program withLD Ladder Diagram

Ladder Diagram LD

840 USE 503 00 October 2002 229

Creating a Program in LD

Introduction The following description contains an example for creating a program in Ladder
Diagram (LD). The creation of a program in LD Ladder Diagram is divided into 2
main steps:

Creating a
Section

The procedure for creating a section is as follows:

Step Action

1 Creating a Section (See Creating a Section, p. 229)

2 Creating the Logic (See Creating the Logic, p. 230)

Step Action

1 Using the File → New Section... menu command, create a new section and
enter a section name.

Note: The section name (max. 32 characters) is not case-sensitive and must be
unique within the whole project. If the name entered already exists, you will be
warned and you will have to choose a different name. The section name must
comply with the IEC name conventions, otherwise an error message appears.

Note:In compliance with IEC1131-3 only letters are permitted as the first
character of names. However, if you wish to use numbers as the first character,
you can enable this using the Options → Preferences → IEC Extensions... →
Allow Leading Digits in Identifiers menu command.

Ladder Diagram LD

230 840 USE 503 00 October 2002

Creating the
Logic

The procedure for creating the logic is as follows:

Step Action

1 To insert a contact or coil in the section, open the Objects main menu and select
the desired contact or coil. Contacts and coils can also be selected using the tool
bar. Place the contact or coil in the section.

2 To insert an FFB into the section, select the Objects → Select FFB... menu
command.
Response: The FFBs from Library dialog box is opened.

3 In this dialog box you can select a library and an FFB from it by using the
Library... command button. You can, however, also display the DFBs that you
created and select one of them using the DFB command button.

4 Place the selected FFB in the section.

5 When all FFBs have been placed, close the dialog box with Close.

6 Activate select mode using Objects → Select Mode, and move the contacts,
coils and FFBs to the required position.

7 Activate link mode with Objects → Link, and connect the contacts, coils and
FFBs. Connect the contacts, FFBs and the left power rail.

8 Then re-activate select mode with Objects → Select mode, and double-click on
a contact or coil.
Response: The Properties: LD objects dialog box is opened, in which you can
allocate an actual parameter to the contact/coil.

Close

DFB Type

LIGHTSS
NEST1
NEST2

FFBs in IEC Library

Group

FFB sorted...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB Type

AND_BYTE
AND_WORD
NOT_BOOL
NOT_BYTE
NOT_WORD
OR_BYTE

Help on Type

Library...

Help

DFB

Ladder Diagram LD

840 USE 503 00 October 2002 231

9 Depending on the program logic you can allocate the following to the contact/
coil:
l Variable

l Located variable
You can allocate a hardware input/output signal to the input/output using
a located variable.
The name of the variable is shown at the input/output in the editor window

l Unlocated variable
You can use the unlocated variable allocated to the input/output as a
discrete, i.e. to resolve loops, or to transfer values between different
sections.
The name of the variable is shown at the input/output in the editor window.

l Direct address
You can allocate a hardware input/output signal to the input/output using an
address.
The address is shown at the input/output in the editor window.

Note: For an example for invocation of multi-element variables see Calling
Derived Data Types, p. 524.
Note: Unconnected FFB inputs are specified as "0" by default.

10 To connect the FFB input/outputs to the actual parameters, double-click on one
of the unconnected input/outputs.
Response: The Connect FFB dialog box is opened, in which you can allocate
an actual parameter to the input/output.

Step Action

LampTest1 Lookup…

Connect with

Variable Literal

Name

Connecting FFB: .2.15 (AND_BOOL)

Input: IN1 (BOOL)

Cancel HelpOK

Direct Address

Variable Declaration...

Inverted

Ladder Diagram LD

232 840 USE 503 00 October 2002

11 Depending on the program logic you can allocate the following to the input/
output:
l Variable

l Located variable
You can allocate a hardware input/output signal to the input/output using
a located variable.
The name of the variable is shown at the input/output in the editor window

l Unlocated variable
You can use the unlocated variable allocated to the input/output as a
discrete, i.e. to resolve loops, or to transfer values between different
sections.
The name of the variable is shown at the input/output in the editor window.

l Constant
You can allocate a constant to the input. The constant can be transferred
to other sections. You determine the value of the constant in the variable
editor.
The name of the constant is shown at the input in the editor window.

l Literal
You can allocate a literal to the input, i.e. directly allocate a value to the input/
output.
The value is shown at the input in the editor window.

l Direct address
You can allocate a hardware input/output signal to the input/output using an
address.
The address is shown at the input/output in the editor window.

Note: For an example for invocation of multi-element variables see Calling
Derived Data Types, p. 524.
Note: Unconnected FFB inputs are specified as "0" by default.

12 Save the LD section using the File → Save Project menu command.

Step Action

840 USE 503 00 October 2002 233

9
Sequence language SFC

At a Glance

Overview This Chapter describes the sequence language SFC which conforms to IEC 1131.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

9.1 General information about SFC sequence language 235

9.2 SFC sequence language elements 237

9.3 Working with the SFC Sequence Language 253

9.4 Online functions of the SFC sequence language 269

Sequence language SFC

234 840 USE 503 00 October 2002

Sequence language SFC

840 USE 503 00 October 2002 235

9.1 General information about SFC sequence
language

Sequence language SFC

236 840 USE 503 00 October 2002

General information about SFC language

At a Glance The sequence language SFC is described in this section according to IEC 1131-3.

In the SFC (Sequential Function Chart) sequence language, a section is split into
single configured sequential steps, through steps and transitions, which alternate in
the sequence plan.

Objects A sequential control uses the following objects when creating a program:
l Step (See Step, p. 238)
l Transition (See Transition, p. 242)
l Jump (See Jump, p. 246)
l Connection (See Link, p. 245)
l Alternative branch (See Alternative Branch, p. 248)
l Simultaneous branch (See Parallel branch, p. 251)
l Alternative connection (See Alternative connection, p. 250)
l Parallel connection (See Parallel connection, p. 252)
l Text object (See Text object, p. 252)

Structure of an
SFC section

Steps and transitions are linked with one another through directional links. Two
steps can never be directly linked, and must always be separated by a transition.
The processes of the active signal status take place along the directional links,
triggered by the connecting of a transition. The direction of the string process follows
the directional links and runs from the under side of the predecessor step to the top
side of the successive step. Branches are processed from left to right.

A jump can be put in the place of a step. Step strings are always concluded with a
jump to another step on the same step string. It is run down cyclically.

Nil or more action belong to every step. Steps without action are known as waiting
steps. A condition for transition belongs to every transition.

Editing with the
keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the FBD and SFC Editor, p. 768)

IEC conformity For a description of the IEC conformity of the SFC programming language see IEC
conformity, p. 779.

Sequence language SFC

840 USE 503 00 October 2002 237

9.2 SFC sequence language elements

At a Glance

Overview This section describes the SFC sequence language elements.

What’s in this
Section?

This section contains the following topics:

Topic Page

Step 238

Action 240

Transition 242

Transition section 243

Link 245

Jump 246

Alternative Branch 248

Alternative connection 250

Parallel branch 251

Parallel connection 252

Text object 252

Sequence language SFC

238 840 USE 503 00 October 2002

Step

Introduction A step is represented using a block that contains a step name. Step names must be
unique within the project.

A step becomes active when the upstream transition is satisfied and is normally
inactive when the downstream transition is satisfied.

Initial Step A special case with steps is the initial step. The initial status of a SFC section is
characterized by the initial step, which is active when initializing the project
containing the section. A step in a SFC section must always be defined as an initial
step. In Concept it is possible to define a step in the middle of a step string as initial.

The initial step is denoted by double lined borders.

Waiting Step Zero or more actions belong to every step. Steps without action are known as
waiting steps.

Step Delay Time A time can be entered, which is the least amount of time the step must be active for.
This is called the step delay time (step duration).

Maximum
Supervision
Time

The maximum supervision time specifies the maximum time in which the step should
normally be active. If the step is still active after this period of time, an error message
occurs, which you can view using the Online → Event Viewer. In animation mode,
the error is additionally identified by a colored outline around the step object.

Note: This time is only applicable to the step, not for the actions allocated to it.
Individual times can be defined for these.

Note: This time supervision applies only to the step, not to the actions allocated to
it. Individual times can be defined for these.

Sequence language SFC

840 USE 503 00 October 2002 239

Minimum
Supervision
Time

The minimum supervision time sets the minimum time for which the step should
normally be active. If the step is still active after this period of time, an error message
occurs, which you can view in the Online → Event Viewer. In animation mode, the
error is additionally identified by a colored outline around the step object.

Coordinating the
Times

Step delay time< minimum supervision time< maximum supervision time

Setting the Times In the properties dialog, the time values can be entered directly as time literals or
can be set as multi element variables of data type SFCSTEP_TIMES. The values
can be automatically determined in learn supervision time mode.

The time literals can be modified in animation mode.

SFCSTEP_
TIMES Variable

In ’SFCSTEP_TIMES’ variable usage, the learned times of these variables are
assigned as the initial values. If these initial values are to be used for a long period
of time, corresponding elements (min., max.) of these variables must not be written.
After the supervision times have been learned, the modified initial values must be
downloaded to the PLC using Online → Download Changes.

The ’SFCSTEP_TIMES’ variable can be used everywhere and has the following
structure:
’varname’: SFCSTEP_TIMES
 delay: TIME
 min: TIME
 max: TIME

The elements have the following meaning:
l ’varname’.delay = delay time
l ’varname’.min = minimum supervision time
l varname’.max = maximum supervision time

Note: This time supervision applies only to the step, not to the actions allocated to
it. Individual times can be defined for these.

Sequence language SFC

240 840 USE 503 00 October 2002

Step Variable Every step is implicitly allocated a (read only) variable of data type
SFCSTEP_STATE. This step variable has the name of the allocated step. The step
variable can be used everywhere and has the following structure:

’Step name’: SFCSTEP_STATE
 t: TIME
 x: BOOL
 tminErr: BOOL
 tmaxErr: BOOL

The elements have the following meaning:
l ’Step name’.t = current dwell time in step
l ’Step name’.x

l 1: Step active
l 0: Step inactive

l ’Step name’.tminErr
l 1: Underflow of minimum supervision time
l 0: No underflow of minimum supervision time

l ’Step name’.tmaxErr
l 1: Overflow of maximum supervision time
l 0: No overflow of maximum supervision time

Action

At a Glance The actions, which are to be performed, as the step is active must be connected to
the step.

Actions are declared in the properties dialog of the triggering step, see Declaring
actions, p. 260.
A step can be assigned none or several actions. A step which is assigned no action,
has a waiting function, i.e. it waits until the assigned transition is completed.

An action is a variable of BOOL data type.

The control of actions is expressed through the use of identifiers.

Sequence language SFC

840 USE 503 00 October 2002 241

Signal
assignment

The following signals can be assigned to an action:
l Direct address

An action can be assigned a hardware output via a direct address. In this case,
the action can be used as an enabling signal for a transition, as an input signal in
another section and as an output signal for the hardware.

l Variable
The action can be used as an input signal with assistance from a variable in
another section. This variable is also called action variable.
l Unlocated variable

With Unlocated variablethe action can be used as an enabling signal for a
transition and as an input signal in an FBD section. Unlocated variables are
declared in the Variable Editor (See Variables editor, p. 479).

l Located variable
With Located variable the action can be used as an enabling signal for a
transition, as an input signal in another section and as an output signal for the
hardware. Located variables are declared in the Variable Editor (See
Variables editor, p. 479).

Direct addresses The information on/display of direct addresses can be given in various formats. The
display format is set in the dialog box Options → Preferences → Common....
Setting the display format has no impact on the entry format, i.e. direct addresses
can be entered in any format.

The following address formats are possible:
l Standard format (X00001)

The five-character address comes directly after the first digit (the Reference).
l Separator format (X:00001)

The first digit (the Reference) is separated from the following five-character
address by a colon (:).

l Compact format (X:1)
The first digit (the Reference) is separated from the following address by a colon
(:), and the leading zeros of the address are not given.

l IEC format (XW1)
In first place, there is an IEC identifier, followed by the five-character address.
l %0x12345 = %Q12345
l %1x12345 = %I12345
l %3x12345 = %IW12345
l %4x12345 = %QW12345

Sequence language SFC

242 840 USE 503 00 October 2002

Transition

Introduction A transition specifies the condition through which the check of one or more pre-
transition steps passes on to one or more consecutive steps along the
corresponding link.

Transition
Condition

A transition condition is one of the variables of data type BOOL allocated to the
transition.

Transition conditions are declared in the properties dialog of the transition, see also
Declaring a Transition, p. 264.

The transition condition can be:
l a direct address (input or output),
l a variable (input or output) or
l a Transition Section (See Transition section, p. 243).

Variable name position:

Enabling a
Transition

A transition is enabled if the steps immediately preceding it are active. Transitions
whose immediately preceding steps are not active are not analyzed.

Transition
Switch Time

The transition switch time can theoretically be as short as possible, but can never
be zero. The transition switch time lasts at least the duration of the scan.

If... Then...

If you allocate a direct address or a variable to
the transition.

Then the name of the address/variable is
displayed below the transition icon.

If you allocate a transition section to the
transition.

Then the name of the transition section is
displayed above the transition icon.

Note: The variable or address allocated to the transition is only read by the
transition, never written.

Note: If no transition condition is defined, the transition will never be active.

Sequence language SFC

840 USE 503 00 October 2002 243

Transition
Diagnosis

Transition switching can be supervised by the Transition Diagnosis (See Transition
diagnosis, p. 277).

Transition
Trigger Sweep

Transition trigger sweep occurs when the transition is enabled and the associated
transition conditions are satisfied.
Triggering a transition leads to the disabling (resetting) of all immediately preceding
steps that are linked to the transition, followed by the activation of all immediately
following steps.
If triggering a transition leads to the activation of several steps at the same time, then
the sequence belonging to these steps is called Parallel Chain (See Parallel branch,
p. 251). After simultaneous activation, each of these chains is processed
independently of each other. To emphasize this specific type of construction, the
branch and connection of parallel chains are displayed with a double horizontal line.

Transition section

At a Glance For every Transition (See Transition, p. 242) a transition section can be created.
This is a section containing the logic of the transition condition and it is automatically
linked with the transition.

Generating a
transition
section

Transition sections are generated in the properties dialog of the transition, see also
Declaring a Transition, p. 264.

Name of
transition
section

Name of transition section:

If… Then…

If in the dialog Options → Presettings...
the option Dynamically enumerated has
been selected.

Then the alias designation of the transition is
displayed in the Transition properties dialog
automatically.

Should a name for the transition section be
entered manually.

Please ensure that the name is unique
throughout the whole project (the name is not
case-sensitive). If the section name entered
already exists, a warning is given, and another
name must be chosen. The name must
correspond to the IEC Name conventions,
otherwise an error message appears.

Note: Do NOT alter the name of a transition section through Data file → Section
properties, otherwise the link to the transition is will be lost.

Sequence language SFC

244 840 USE 503 00 October 2002

Occupying a
transition
section

When first opening the transition section (Edit... key in the Transition properties
dialog) this is automatically generated. The name of the transition section is
displayed above the transition symbol in the SFC editor.

Altering the
transition
conditions

Should another option be selected after the creation of the transition section as
Transition section, a query appears, whether the transition section should be
deleted. If the question is replied in the negative, the transition section remains.

A list can be displayed with the currently unused transition section with help from the
command button Look up... .

Programming
languages for
transition
section

FBD, LD, IL and ST are possible as programming languages for transition sections.

The programming language to be used can be defined in the dialog Options →
Preferences → Common... with the option Editor type of Transition Sections.
Should the FBD programming language be selected, the section is automatically
preallocated with a UND block with 2 inputs whose outputs is preallocated with the
name of the transition section. The proposed block can then be linked or altered. No
such provision is evident for the other programming languages.

Editing function
for transition
section

The editing function for transition sections is restricted as opposed to "normal"
sections in the following ways:
l The transition section only has one single output (transition variable), whose data

type is BOOL. The name of this variable must be identical to the name entered in
the Transition section field.

l The transition variable can only be used once in written form.
l Only functions can be used, Function Blocks cannot.
l There is only one network, i.e. all functions used are linked with each other either

directly or indirectly.
l Transition sections can only be reached via the menu command button Edit... in

the Transition properties dialog. They do not appear in the Open section
dialog.

l In the Delete section dialog transition sections are denoted by a "T" in front of
the section name.

Transition
section
animation

If the transition, and therefore the transition section, is not processed, the status
INHIBITED appears in the animated transition section.

Sequence language SFC

840 USE 503 00 October 2002 245

Link

At a Glance Links connect steps and transitions. Links are normally generated automatically
when positioning objects. If objects are positioned in cells which do not immediately
follow each other, a link must explicitly be made.

Simple
sequences

The change of step and transition is consequentially repeated with simple
sequences.

A process of S_5_10 to S_5_11 only takes place, if step 5_10 is in an active state
and the condition for transition a is true.

S_5_10

S_5_11

a

b

Sequence language SFC

246 840 USE 503 00 October 2002

Jump

General
information

A jump enables a program to continue in another place. Jumps into a Parallel chain
(See Parallel branch, p. 251) in or out of a parallel chain are not possible.

Differences are made between chain jumps and chain loops with jumps.

Chain jump A chain jump is a special case of alternative branch, with one or more branches
containing no steps.

A process of S_5_10 via S_5_11 and S_5_12 after S_5_13 only occurs, if S_5_10
is active and the condition for transition a is true. A process of S_5_10 directly after
S_5_13 only occurs, if S_5_10 is active and the condition for transition b is true and
a is false.

S_5_10

S_5_11

a

c

S_5_13

b

S_5_12

d

S_5_13

Sequence language SFC

840 USE 503 00 October 2002 247

Chain loop A chain loop is a special case of alternative branch, with which one or more
branches lead back to a previous step.

A process of S_5_11 via S_5_10 only occurs if the condition for transition c is false
and b is true.

S_5_10

S_5_12

c

a

S_5_10

b

S_5_11

Sequence language SFC

248 840 USE 503 00 October 2002

Alternative Branch

Introduction The alternative branch offers the possibility to program branches conditionally in the
control flow of the SFC structure.

Structure With alternative branches, as many transitions follow a step under the horizontal line
as there are different sequences. Only one of these transitions can ever be
switched. The branch to be solved is determined by the result of the transition
conditions of the transitions, which come after the alternative branch.

Processing
Sequence

Branch transitions are processed from left to right. If a transition condition is
satisfied, the remaining transitions are no longer processed The branch with the
satisfied transition is activated. This gives rise to a left to right priority for branches.

If none of the transitions is switched, the currently set step remains set.

Processing Sequence processing:

Sequence processing:

If... Then...

If S_5_10 is active and the transition condition
a is true.

Then a sequence from S_5_10 to S_5_11
occurs.

If S_5_10 is active and the transition condition
b is true and a is false.

Then a sequence from S_5_10 to S_5_12
occurs.

S_5_10

S_5_11

a

c

b

S_5_12

d

Sequence language SFC

840 USE 503 00 October 2002 249

Alternative
Branch after
Parallel Joint

According to IEC 1131-3, alternative branches may not directly follow parallel joints.
The joint and the branch must be separated by a transition step sequence.
Example:

If you want to insert an alternative branch directly after a parallel joint, you can use
the Options → Preferences → Graphic Editors → Allow Alternative Branches
after Parallel Joints to do so.
Example:

Joint All alternative branches must be rejoined to a single branch through Alternative
Joints (See Alternative connection, p. 250) or Jumps (See Jump, p. 246).

S_5_11 S_5_12S_5_10

S_5_14

a b c

e

S_5_15 S_5_16

f g

S_5_13

d

S_5_11 S_5_12S_5_10

S_5_13

a b c

d

S_5_14 S_5_15

e f

Sequence language SFC

250 840 USE 503 00 October 2002

Alternative connection

At a Glance In the alternative connection, the various branches of an alternative branch are
again connected to one branch in which additional processing can be performed.
This connection can also be performed with a jump.

Processing Sequence processing:

Sequence processing:

If… Then…

If S_5_10 is active and the transition condition
d is true.

Then a process of S_5_10 to S_5_12 takes
place.

If S_5_8 is active and the transition condition
b is true, and therefore a jump to S_5_12 is
performed.

Then a process of S_5_8 to S_5_12 takes
place.

If S_5_11 is active and the transition condition
e is true.

Then a process of S_5_11 to S_5_12 takes
place.

Note: Only a single one of these branches is active, corresponding to the transition
condition in the alternative branch.

S_5_7

S_5_12

d

a

S_5_12S_5_10

S_5_8

b

S_5_9

e

c

S_5_11

Sequence language SFC

840 USE 503 00 October 2002 251

Parallel branch

At a Glance With parallel branches, the edit is split into two or more strings, which will be
processed in parallel Only a joint transition immediately through the horizontal
double synchronization lines is possible.

Processing Processing a sequence:

Processing a sequence:

Definition of
initial steps

If a step is to become an initial step within a parallel branch, a step must be defined
as the initial step in each branch of the parallel branch.

If… Then…

If S_5_10 is active and the transition condition
a, which shares the same transition, is
likewise true.

Then a process of S_5_10 to S_5_11,
S_5_12,… takes place.

Note: After the simultaneous activation of S_5_11, S_5_12 etc., the sequences
run independent of each other.

S_5_10

S_5_11 S_5_12 S_5_13

a

b c d

Sequence language SFC

252 840 USE 503 00 October 2002

Parallel connection

At a Glance The parallel connection reconnects two or more parallel branches to a branch. The
transition to a parallel connection is evaluated when all previous steps of the
transition are set. Only a joint transition immediately through the double horizontal
synchronisation lines is possible.

Processing Processing a sequence:

Processing a sequence:

Text object

At a Glance Text can be positioned in the form of text objects using SFC sequence language.
The size of these text objects depends on the length of the text. This text object is
at least the size of a cell and can be vertically and horizontally enlarged to other cells
according to the size of the text. Text objects can only be placed in free cells.

Memory space Text objects occupy no memory space on the PLC because the text is not
downloaded onto the PLC.

If… Then…

If S_5_10, S_5_11 etc. are active at the same
time and the transition condition d, sharing a
joint transition, is true.

Then a process of S_5_10, S_5_11, …to
S_5_13 takes place.

S_5_11 S_5_12S_5_10

S_5_13

a b c

d

Sequence language SFC

840 USE 503 00 October 2002 253

9.3 Working with the SFC Sequence Language

Introduction

Overview This section describes working with the SFC sequence language.

What’s in this
Section?

This section contains the following topics:

Topic Page

General information on editing objects 254

Declaring step properties 257

Declaring actions 259

Identifier 262

Declaring a Transition 264

Alias Designations for Steps and Transitions 266

Sequence language SFC

254 840 USE 503 00 October 2002

General information on editing objects

At a Glance In the SFC editor the background consists of a logical grid. SFC objects can
theoretically be placed in every unoccupied cell. If a link with another object is
established (explicitly or by vertically placing objects in neighboring cells), this link
will be tested. If this link is not permitted, a report of this is given and the object is
not inserted.

Steps, transitions and jumps each require a cell. Parallel branches, parallel
connections, alternative branches and alternative connections do not require a
separate cell each, but are inserted into the corresponding cell of the step or
transition.

Maximum
number of
elements

To prevent step strings being subdivided, 99 linked steps with the transitions are
vertically shown along with a locking jump with its transition. To limit the complexity
and to enable the animation to be performed, the number of objects (Steps +
Transitions + Branches + Connections) in one section is limited to 2000.

Inserting Objects The SFC object (Step, Transition etc.) can be inserted individually via the menu
command in the main menu Objects or in the form of a a group (Step transition
string, structured parallel string etc.) of the required size.
After selection of the object, a position in the step string can be selected, in which
the object should be inserted. If the position selected is already occupied, space is
made before insertion into the step string, if desired, and then the object placed in
it. If the object is placed on a connection, it is separated, the object is inserted and
a link to the newly placed object is generated.

Shifting objects If the object is shifted onto a connection, it is separated, the object is inserted and a
link to the newly placed object is generated.

Copying steps By copying and inserting it is possible to copy steps through projects. Since the
definition of actions displays a reference to a variable, which is defined by the
Variable Editor for the particular project, copying between projects can result in this
reference no longer being valid. In this instance, the action is deleted, the action list
is updated and an error message is displayed.

Deleting steps Steps can only be deleted after an action has been saved if the action(s) were
unconnected before the step was performed.

Sequence language SFC

840 USE 503 00 October 2002 255

Selecting an
object

The procedure for selecting an object is as follows:

Selecting several
objects (by
pressing Shift)

The procedure for selecting several objects (by pressing Shift) is as follows:

Selecting several
objects (by using
the rubber band
function)

The procedure for selecting several objects (by using the rubber band function) is as
follows:

Selecting all
objects in a
column/line

The procedure for selecting all objects in a column/line is as follows:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Position the cursor on the object to be selected and left-click.
Reaction: The selected object is displayed in a blue border.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Position the cursor on the object to be selected first and left-click.

3 Press and hold the Shift key, select additional objects and left-click.
Reaction: The selected objects are displayed in a blue border.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Press and hold the left mouse button, and pull a border over the objects to be
selected.
Reaction: On releasing the mouse key, all objects touching the border will be
selected. The selected objects are displayed in a blue border.

Step Action

1 With Objects → Selection mode go to selection mode.

2 In the column ruler/line ruler, click on the column number/line number whose
objects are to be selected.
Note: To select several columns/lines, press and hold the Shift key.
Reaction: The selected objects are displayed in a blue border.

Sequence language SFC

256 840 USE 503 00 October 2002

Inserting
additional
columns

The procedure for inserting additional columns within an existing step string is as
follows:

Inserting
additional lines

The procedure for inserting additional lines within an existing step string is as
follows:

Step Action

1 With Objects → Selection mode go to selection mode.

2 In the column ruler, click on the column number in front of which the insertion is
to be performed.
Note: In order to insert several columns, press the Shift key to select several
columns and insert a corresponding number of empty spaces.

3 Use the menu command Edit → Insert.
Reaction:From the selected column, the entire step string is moved one column
to the right. The links (branches) will remain intact.

Step Action

1 With Objects → Selection mode go to selection mode.

2 In the line ruler, click on the line number in front of which the insertion is to take
place.
Note: Should the insertion of several lines be required, several lines are selected
and a corresponding number of empty spaces are inserted by pressing the Shift
key.

3 Use the menu command Edit → Insert.
Reaction: From the selected line, the entire step string is moved one line
downwards. The links (branches) therefore remain even.

Sequence language SFC

840 USE 503 00 October 2002 257

Declaring step properties

At a Glance The step properties are declared in the properties dialog of the step.
Declaring step properties:

Step properties

Cancel HelpOK

S_3_19 Comment…Initial stepStep name

Action

Time
LiteralVariableCdet:

None

Action
Variable Direct address

Look up Variable declaration… Instantiate section

Accept

New

Delete

Up

Down

Mon. times and delay time
Literals’SCFSTEP_TIMES’ variable

Maximum

Delay

Minimum

To selected variable…

Sequence language SFC

258 840 USE 503 00 October 2002

Declaring step
properties

The following description contains an example of declaring the step properties:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 A name can be manually defined for the step, or the proposed name can remain.
If a name is to be assigned, please note that the step name (max. 32 characters)
must be unique throughout the entire project. If the step name entered already
exists, a warning is given and another name must be chosen. The section name
must correspond to the IEC name conventions, otherwise an error message is
displayed.
Note: In accordance with IEC1131-3, only letters are permitted as the first
character of step names. Should numbers be required as the first character,
however, the menu command Options → Preferences → IEC Extensions... →
Allow leading digits in identifiers .
Instead of the free names an alias designation can also be selected, see also
Alias Designations for Steps and Transitions, p. 266 This is then shown in SFC
and FBD sections and with search functions, application documentation and
analysis.

4 Next, define whether or not it concerns the initial step of the sequence of the
step. A step must be defined as an initial step for each sequence.

5 If desired, the Mon. time and delay time can be defined for the step.

The time values can be entered in the properties dialog either directly as time
duration literal (this can be automatically transmitted in the Learn Mon. time
mode, see also Learn monitoring times, p. 274) or as multi-element variable of
SFCSTEP_TIMES data type, see also ’SFCSTEP_TIMES’ Variable, p. 239.

Hence:
Delay time< minimum Mon. time< maximum Mon. time

6 Using the command button Comment… click on the dialog box Enter with
comment , in which a comment on the step may be entered. This comment is
shown in the status bar of the editor window, if the step is selected.

Sequence language SFC

840 USE 503 00 October 2002 259

Declaring actions

At a Glance The actions are declared in the properties dialog of the step.
Declaring actions:

Step properties

Cancel HelpOK

S_3_19 Comment…Initial stepStep name

Action

Time
LiteralVariableCdet:

None

Action
Variable Direct address

Look up Variable declaration Instantiate section

Accept

New

Delete

Up

Down

Mon. times and delay time
Literals’SCFSTEP_TIMES’ variable

Maximum

Delay

Minimum

To selected variable…

Sequence language SFC

260 840 USE 503 00 October 2002

Declaring
actions

The following description contains an example of declaring the actions:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 From the Cdet list, select an Identifier (See Identifier, p. 262) for the Action. In
this way, the behavior of the action is determined (e.g. saving, non saving,
delayed etc.).
Note: With the identifiers L, D, and DS, in the text box Time duration: an
additional time duration of TIME data type must be defined.

4 Next define the type of action (variable or dirct address) in the zone Type: with
the option buttons.

5 l If the Variable has been selected, it is possible with the button Var.
declaration...to open the Variable Editor and define a new output variable
there.
Also with the command button Look up... a list of all the variables can be
shown and one selected through Select.

l If the Direct address has been selected, in the text box Direct address: the
output address must be entered.

6 After all the definitions for the actions have been met, confirm this with the
command button New
Note: Confirmation with the Enter key is not possible in this case and leads to
an error message

Sequence language SFC

840 USE 503 00 October 2002 261

Altering an
action

The procedure for altering an action declaration is as follows:

Deleting an
action
declaration

The procedure for deleting an action declaration is as follows:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 To alter an action declaration, select an action in the list.
Reaction: All definitions (identifiers, time duration, variable or address and type)
of the action are transferred into the corresponding text boxes and lists.

4 If these definitions are altered, as described in the Declaring actions, p. 260
section.

5 l Should it be necessary to assign these new definitions as a new action in the
step, use the command button New.
Reaction: The action is additionally recorded in the list of actions.

l Should it be necessary to overwrite the current action with the new action, use
the command button Accept
Reaction: The old action is overwritten.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 To delete an action declaration, select an action in the list.
Reaction: All definitions (identifiers, time duration, variable or address and type)
of the action are transferred into the corresponding text boxes and lists.

4 Use the command button Delete.
Reaction: The selected action is deleted.

Sequence language SFC

262 840 USE 503 00 October 2002

Identifier

At a Glance For every connection of an action to a step, an identifier must be defined for the
action. The identifier must define the control of the action. The identifier can be
introduced as the input of an internal Function Block for the configured link of the
step with the action. If the step is active, the input of this internal Function Block is
set to 1. The Function Block is then processed according to its type. If all conditions
are satisfied, the output Q (action) is set to 1.

The following identifiers are usable in Concept:
l N / none (See Identifier N / none, p. 262)
l S (See Identifier S, p. 262)
l R (See Identifier R, p. 263)
l L (See Identifier L, p. 263)
l D (See Identifier D, p. 264)
l P (See Identifier P, p. 264)
l DS (See Identifier DS, p. 264)
For the identifiers L, D and DS, a time duration of the data type TIME must
additionally be defined.

Identifier N /
none

The identifiers N and none have the same meaning and stand for "Not saved" and/
or "No identifier".

Identifier S The identifier S stands for "set (saved)".

The set action also remains active, when the associated step is inactive. The action
first becomes inactive, when reset is used with the Identifier R (See Identifier R,
p. 263) in another step.

Note: The identifier is automatically declared as unbuffered. This means that the
value is reset to "0" after stop and cold restart, e.g. when voltage is on/off. Should
a buffered output be required, please use the RS or SR Function Block from the
IEC block library.

Sequence language SFC

840 USE 503 00 October 2002 263

Identifier R The identifier R stands for "overriding reset".

The action, which is set in another step with the Identifier S (See Identifier S, p. 262),
is reset. The activation of any action can also be prevented.

In the step S_5_10 the action ACT1 becomes and remains active, until the reset in
step S_5_12.

Identifier L The identifier L stands for "Limited".

If the step is active, the action is also active. After the process of the time duration,
defined manually for the action, the action returns to 0, even if the step is still active.
The action also becomes 0 if the step is inactive.

Note: The identifier is automatically declared as unbuffered. This means that the
value is reset to "0" after stop and cold restart, e.g. when voltage is on/off. Should
a buffered output be required, please use the RS or SR Function Block from the
IEC block library.

Step properties

S_5_10 Comment…Initial stepStep name

Time
LiteralVariableCdet:

S

Action
Variable Direct address

Look up Variable declaration Instantiate section

Accept

ACT1

S ACT1

Action

Step properties

S_5_12 Comment…Initial stepStep name

Time
LiteralVariableCdet:

R

Action
Variable Direct address

Look up Variable declaration Authorize section

Accept

ACT1

R ACT1

Action

S_5_10

S_5_11

a

S_5_12

b

c

Sequence language SFC

264 840 USE 503 00 October 2002

Identifier D The identifier D stands for "delayed".

If the step is active, the internal timer is started and the action becomes 1 after the
process of the time duration, which was defined manually for the action. If the step
becomes inactive after that, the action becomes inactive as well. If the step becomes
inactive before the process of the internal time, the action does not become active.

Identifier P The identifier P stands for "Pulse".

If the step becomes active, the action becomes 1 and this remains for one program
cycle, independent of whether or not the step remains active.

Identifier DS The identifier DS stands for "delayed and saved". It is a combination of the identifiers
D (See Identifier D, p. 264) and S (See Identifier S, p. 262).

If the step becomes active, the internal timer is started and the action becomes
active after the process of the manually defined time duration. The action first
becomes inactive once again, when reset is used with the IdentifierR (See Identifier
R, p. 263) in another step. If the step becomes inactive before the process of the
internal time, the action does not become active.

Declaring a Transition

Introduction Transitions are declared in the properties dialog of the transition.
Declaring a transition:

TransSection2 Edit...

Type of transition condition

Transition section Literal

Transition section

Transitions properties

Cancel

Direct address

Invert transition condition Comment....

Variable

Look up...

OK Help

Sequence language SFC

840 USE 503 00 October 2002 265

Declaring a
transition:

The following example describes the procedure when declaring a transition:

Copying
transition
conditions

By copying and inserting it is possible to copy transitions through projects. Since the
definition of a transition displays a reference to a variable, which is defined by the
Variable Editor for the particular project, copying between projects can result in this
reference no longer being valid. In this instance, the transition condition is deleted
and an error message appears.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a transition.
Response: The dialog Transition properties of the transition is opened.

3 Begin by determining Kind of transition condition: determine the type
(Transition section, Variable, Literal, Direct address) of transition condition.

4 l After selecting theTransition section has been selected, enter in the text
box Transition section the name of the transition section to be created. This
is a section containing the logic of the transition condition and it is
automatically linked with the transition. To process this section, press the
command button Process....

l After selecting theVariable has been selected, enter in the text box BOOL
variable the name of the selected unlocated variable, located variable or
constants.
Note: For an example for invocation of multi-element variables see Calling
Derived Data Types, p. 524.

l If the Literal has been selected, select in the field Value the value of the
literal.

l If the Dir. address , enter in the text box Direct addressthe required
address.

5 The transition condition can now be inverted with the Invert trans. cond. check
box.
Response: An inverted transition condition is displayed with a (~) symbol in front
of the name of the variable on the transition.

6 With the command button Comment click on the dialog box Enter with
comment, in which a comment about the transistion can be entered. This
comment is shown in the status bar of the editor window, if the transition is
selected.

7 After all the definitions for the transition have been met, confirm this with the
command button OK.

Sequence language SFC

266 840 USE 503 00 October 2002

Alias Designations for Steps and Transitions

Introduction Instead of free names you can also select alias designations for steps and
transitions. These are then displayed in SFC and FBD sections during search
functions, application documentation and analysis.

Import and export functions do not recognize the alias designations, since they are
dynamically generated. The visualization can retrieve the alias designations
dynamically, however they cannot be used for the configuration of fixed references,
since they can change constantly.

The languages ST, IL and LD do not support alias designations and display the free
names.

Name Definition The alias designations are dynamically generated during editing procedures, and
the same applies when the Dynamic Numbered option is switched on.

Alias designations remain empty until numbering can take place i.e. when all objects
are linked to one chain.

The alias designations are made up of the position of the steps and transitions in the
section and the section name.

The length of the section name part displayed in the alias designation is freely
definable in the Options → Preferences → Graphical Editors Preferences dialog.
You can define how many characters from the section name (beginning with the first
character) should go into the alias designations here.

Alias
Designations for
Steps

With steps, the lines and columns occupied by steps are each numbered beginning
with the top left. A four-figure step number is made from the column and line
numbers (ccll). The alias designation for steps is made from S_ string, part of the
section name (nnn), a further underscore (_) and the step number (ccll) (S_nn_ccll).

Note: The settings in this dialog are used in the project description (PRJ.DSK) and
in the Concept installations description (CONCEPT.DSK), i.e. they are valid for the
entire Concept installation.
If a project is opened, which was created using alternative settings (e.g. Settings
from Presentation of Steps and Transitions numbered IEC_like in the project
and Dynamic numbered in the current Concept installation), errors can occur
when opening projects.

Sequence language SFC

840 USE 503 00 October 2002 267

Alias
Designations for
Transitions

The alias designations for transitions are derived from the alias designation of the
preceding step cell, even when this is empty. The alias designation for transitions is
made from the T_ string, part of the section name (nnn), a further underscore (_)
and the number of the preceding step cell (ccll) (T_nn_ccll).

Activating the
Alias
Designations

The free name is entered as the default for steps and transitions. If you require alias
designations, you can activate them in the Options → Preferences → Graphical
Editors Preferences dialog using the Dynamic Numbered option.

CAUTION

Danger of loss of data.

The free names (IEC_like) are overwritten by the alias names when this
option is selected. If you want to restore the free names, close the
project without saving.

Failure to follow this precaution can result in injury or equipment
damage.

CAUTION

Danger of loss of data.

You must not switch between the IEC_like and Dynamic Numbered
display modes if an FBD transition section is already open. Otherwise,
this could result in section and variable names containing spaces.
Therefore, close all FBD transition sections before you change the
representation mode.

Failure to follow this precaution can result in injury or equipment
damage.

Sequence language SFC

268 840 USE 503 00 October 2002

Example for
Alias
Designations

Example for alias designations:

Inserting and
Deleting Objects

When inserting and deleting objects (steps and transitions) the alias designations
are renumbered.

S_nnn_0001

S_nnn_0002 S_nnn_0102 S_nnn_0202

S_nnn_0103 S_nnn_0203

S_nnn_0204

S_nnn_0003

S_nnn_0004

S_nnn_0005

Sequence language SFC

840 USE 503 00 October 2002 269

9.4 Online functions of the SFC sequence language

At a Glance

Overview This section describes the online functions of the SFC sequence language
elements.

What’s in this
Section?

This section contains the following topics:

Topic Page

Animation 270

Controlling a Step String 272

Learn monitoring times 274

Transition diagnosis 277

Sequence language SFC

270 840 USE 503 00 October 2002

Animation

Introduction In the animation mode the following are displayed in different colors in the editor
window:
l the active steps,
l the time the steps are or were active for,
l time out errors of the steps and
l the status of the transitions (made, not made).

Activating the
Animation

The animation is activated with the menu command Online → Animation.

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in Online help (Tip:
Search the online help for the index reference "Colors").

Changing Values In this mode the following can be changed:
l With transitions:

l the transition condition, if this is a literal.
l With steps:

l the maximum supervision time,
l the minimum supervision time,
l the delay time and
l the times of the actions.

These changes are sent online to the PLC.

Note: If the transition, and therefore the transition section, is not processed, the
status DISABLED appears in the animated transition section.

Sequence language SFC

840 USE 503 00 October 2002 271

Transition
Animation

Normally, only the currently evaluated transitions are animated and their status
(transition condition satisfied/not satisfied) is displayed.

It is also possible to display the status of the transitions not currently being
processed. This will only show the status of the transitions. It has no influence on the
behavior of the sequence. To do this you require the XSFCCNTRL function block of
the SYSTEM block library. Additionally, in the Options → Preferences →
Graphical Editors dialog, you must check the Animate All Conditions of the
Transition Section check box.

Displaying all
Transition
Conditions

The procedure for showing all transition conditions is as follows:

Note: This function leads to a considerable burden on the logic scan. This results
from the fact that all the transitions in the affected section are solved and animated
in one logic scan, whereas this is normally solved sequentially depending on the
process status (preceding step active/inactive).

Step Action

1 Create an FBD section and enter the XSFCCNTRL function block of the
SYSTEM block library.

2 Enter the names of the SFC section to be animated as the instance name (block
name) of the XSFCCNTRL function block.

3 Assign the value "1" to the ALLTRANS input of the XSFCCNTRL function block
(using a literal or, depending on the process, a variable).
Response: By doing this, the calculation of all transition conditions is activated.
Otherwise an old status of the transition condition would be displayed.

4 With the menu command Project → Execution Order... (or the project browser)
ensure that the FBD section is executed before the SFC section to be animated

5 Check the Animate All Conditions of the Transition Section check box in the
Options → Preferences → Graphical Editors dialog.

6 Download the program to the PLC and start the animation of the SFC section.
Response: All transition conditions are then displayed.

Sequence language SFC

272 840 USE 503 00 October 2002

Controlling a Step String

Introduction There are 3 ways of controlling a string:
l with the animation control
l with the menu commands in the main menu Online
l with the SFCCNTRL or XSFCCNTRL function block (SYSTEM block library)

If controlling a string through the different options simultaneously, these control
operations have equal priority.

The control operations triggered using the menu commands in the Online main
menu and using the animation panel can be locked by the function blocks
SFCCNTRL and XSFCCNTRL.

A control operation in one of the methods is also displayed in the other two methods.

Requirements It is only possible to control the step string when the animation mode for the section
is active.

Animation Panel The animation panel is activated with the menu command Online → Show
Animation Panel.

The animation panel contains all the possibilities that are also available as menu
commands.

Mode of
Functioning

You can test the processing of an SFC section with the animation panel and the
menu commands. For example, steps can be relayed, the processing of the string
can be controlled (whether or not transitions and/or actions are to be processed),
time errors can be reset or the string can be reset to initialization status.

WARNING

Danger of unsafe, dangerous and destructive tool operations.

Set/Reset flag, Disable Transitions, Disable Actions, Step
Unconditional, Step/Trans. dependant and Force Selected Steps
should not be used for debugging on controllers of machine tools,
processes or material maintenance systems when they are running.
This can lead to unsafe, dangerous and destructive operation of tools
or processes linked to the controller.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Sequence language SFC

840 USE 503 00 October 2002 273

Set/Reset Flag The Set/Reset flag resets the string and starts it as standard.
l Reset chain

To reset the string, activate Set/Reset Flag. This stops the chain and all actions
are reset. No operator interventions are possible.

l Starting the chain in a standardized way
For a standardized start of the string, Set/Reset Flag must first be activated and
then deactivated. With the 1 → 0 slope the chain is reset i.e. the initial step is
activated.

Disable Time
Check

If Disable Time Check is activated, there is no longer any time supervision of the
steps. The step delay time, however, still remains active.

Disable
Transitions

If Disable Transitions is activated, the transition conditions are no longer utilized.
The string remains in its current state, independent of the signals on the transitions.
The string can still only be used via the control commands (Set/Reset Flag, Step
Unconditional, Step/Trans. Dependant).

Disable Actions If Disable Actions is activated, the step actions are no longer processed.

Step
Unconditional

The next step is activated independently of the transition status, but not until the step
delay time of the active step has elapsed.
With Step Unconditional, all branches are activated in parallel branches, and the
left branch is always activated in alternate branches.

Step/Trans. dependent is used for activating process-dependent branches.

Step/Trans.
Dependent

The next step is activated when the transition conditions are satisfied.

Step/Trans. Dependent is advisable only when Disable Transitions is active.
By freezing the transitions (Disable Transitions) it is possible, with Step/Trans.
Dependent to process the string elements manually step by step. In this way the
transitions commutate depending on the transition condition.

WARNING

Danger of unsafe, dangerous and destructive tool operations.

Step Unconditional activates the next step, even if the transition is not
satisfied.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Sequence language SFC

274 840 USE 503 00 October 2002

Reset Time Error If Reset Time Error is activated, the error message display for time supervision in
the SFC section is reset.

Force Selected
Steps

The selected step(s) are activated independent of the status of the transitions and
steps.

In alternative branches, only one single step and one single branch can be activated.

In parallel branches, steps can only be set, if the process is already located in the
parallel branch and one step in every branch is active. If one step is set in a parallel
branch, all other parallel branches remain unaffected by it.

This functionality is not available via the function blocks SFCCNTRL or
XSFCCNTRL (SYSTEM block library).

Select Active
Steps

The active step of the step string is searched for and selected.

Learn monitoring times

At a Glance In this mode, the minimum and maximum times, for which the steps were active, are
determined. After mode deactivation, the determined times for the single steps are
shown in the Learn step monitoring times dialog box. From there, the minimum
(See Minimum Supervision Time, p. 239) and maximum monitoring time (See
Maximum Supervision Time, p. 238) are accepted in the step properties. During the
transfer, a factor can be specified for the minimum and maximum time.

WARNING

Danger of unsafe, dangerous and destructive tool operations.

Force Selected Steps activates the selected steps, even if the
transition is not satisfied.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Note: This functionality is not available via the Function Blocks SFCCNTRL or
XSFCCNTRL (Block library SYSTEM).

Sequence language SFC

840 USE 503 00 October 2002 275

Note on
determining
values

Please ensure that at least 2 cycles typical for the process were gathered.

The determined values are first saved after the single step becomes inactive, i.e. if
a step was never active during the "Learn monitoring times" mode, no value is
determined for this step.

The storage of all determined step cells of a cycle can take some time. Because of
this, very long step sequence times and very short individual step durations may be
indeterminable, due to internal time overlaps.

Use of
’SFCSTEP_TIME
S’ variable or
constants

Should the step have been assigned a ’SFCSTEP_TIMES’ variable or constant in
the Step properties dialog, the times learned for these variables/constants are
shown as the initial value. Should these initial values be used for a long period of
time, do not allow corresponding elements (min., max.) of these variables/constants
to be written.

After learning the monitoring times, the altered initial values must be loaded into the
PLC.
l This is performed for variables with the menu command Online → Download.
l This is performed for constants with the menu command Online → Download

changes.

Calculating
"learned" times

A factor can be defined for the determined values, which are multiplied when
calculating the monitoring times.
l Minimum monitoring time = minimum determined time x Minimum [%]
l Maximum monitoring time = maximum determined time x Maximum [%]

Calculating
"learned" times "
Example 1

Calculating "learned" times
l The determined times for one step are: 1 s, 2 s, 2 s
l Minimum [%]: 50
l Maximum [%]: 200

Following the above formula, this results in a minimum monitoring time of 500 ms
and a maximum monitoring time of 4 s.

Sequence language SFC

276 840 USE 503 00 October 2002

Calculating
"learned" times "
Example 2

If a delay time is given for the step, this is considered when calculating the minimum
monitoring time. I.e. if the delay time is larger than the calculated value for the
minimum monitoring time, the calculated value for the minimum monitoring time is
ignored and set to 0 ms (i.e. there is no monitoring of the minimum time).

Calculating "learned" times
l The determined times for one step are: 1 s, 2 s, 2 s
l Delay time: 2 s
l Minimum [%]: 50
l Maximum [%]: 200
This results in a minimum monitoring time of 0 ms and a maximum monitoring time
of 4 s.

Calculating
"learned" times "
Example 3

If a delay time is given for the step, this is likewise considered when calculating the
maximum monitoring time. I.e. if the delay time is larger than the calculated value for
the maximum monitoring time, the calculated value for the maximum monitoring time
is ignored and in its place, a suitable value is calculated.

In such a case 2 cases are considered:
l A value for the minimum monitoring time is available.

Then the value for the maximum monitoring time is calculated according to the
following formula: Minimum monitoring time + 20 ms

Example:
l The determined times for one step are: 2 s, 2 s, 2 s
l Delay time: 3 s
l Minimum [%]: 200
l Maximum [%]: 100

Following the above formula, this results in a minimum monitoring time of 4 s and
a maximum monitoring time of 4s20ms.

l No value for the minimum monitoring time is available, see example 2.
Then the value for the maximum monitoring time is calculated according to the
following formula: Delay time + 20 ms

Example:
l The determined times for one step are: 1 s, 2 s, 2 s
l Delay time: 1 s
l Minimum [%]: 50
l Maximum [%]: 100

Following the above formula, this results in a minimum monitoring time of 0 s and
a maximum monitoring time of 1s20ms.

Sequence language SFC

840 USE 503 00 October 2002 277

Transition diagnosis

Preview The transition diagnosis monitors that the immediately preceding step was active
following the transition, commutated within a certain time in the step sequence (with
parallel branches in the step sequences). Should this not be the case, the
associated transition network (with alternative branches, the transition network of all
associated transitions) is analysed, and the error, including the analysed signal, is
entered in the signal buffer. This can now be evaluated using visualization software
(e.g. MonitorPro, Factory Link).

Transition
diagnosis vs.
Reaction
diagnosis

The performance of the transition diagnosis is about equal to that of the reaction
diagnosis (see Function Block REA_DIA from the block library DIAGNO). Contrary
to the reaction diagnosis the re-registration of all the actions started and possible
additional conditions are monitored here.

Activating the
transition
diagnosis

Activating the transition diagnosis:

Note: The transition diagnosis only runs when the string is active.

Step Action

1 Activate the transition diagnosis by entering a Mon. time in the field Maximum
step properties of the immediately preceding step (see also Learn monitoring
times, p. 274).
If the field remains empty or the time 0 is entered the transition monitoring is
inactive.

2 Aktivate in the dialog Project → Code generation options... → Code
generation options... the option Include diagnosis information to make
memory available in the PLC for the error buffer.

3 Load the altered configuration into the PLC.

Sequence language SFC

278 840 USE 503 00 October 2002

840 USE 503 00 October 2002 279

10
Instruction list IL

At a Glance

Overview This Chapter describes the programming language instruction list IL which conforms
to IEC 1131.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

10.1 General information about the IL instruction list 281

10.2 Instructions 283

10.3 IL instruction list operators 295

10.4 Call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs)

320

10.5 Syntax check and Code generation 329

10.6 Online functions of the IL instruction list 333

10.7 Creating a program with the IL instruction list 338

Instruction list IL

280 840 USE 503 00 October 2002

Instruction list IL

840 USE 503 00 October 2002 281

10.1 General information about the IL instruction list

Instruction list IL

282 840 USE 503 00 October 2002

General Information about the IL Instruction List

Introduction With assistance from the programming language (IL) instruction list e.g. Function
Blocks and functions can be called up conditionally or unconditionally, assignments
can be performed, and jumps can be performed conditionally or unconditionally
within a section.

Spell Check Spelling is immediately checked when key words, separators and comments are
entered. If a key word, separator or comment is recognized, it is identified with a
color surround. If unauthorized key words (instructions or operators) are entered, it
is likewise identified in color.

IEC Conventions The IEC 1131 does not permit the input of direct addresses in the usual Concept
form. To input direct addresses see Operands, p. 285.

In accordance with IEC 113-3, key words must be entered in upper case. Should the
use of lower case letters be required, they can be enabled in the dialog box Options
→ Preferences → IEC Extensions... → IEC Extensions with the option Allow
case insensitive keywords.

Blank spaces and tabs have no influence upon the syntax and can be used freely.

Context help With the right mouse button an object can be selected and at the same time a
context sensitive menu called up. Therefore, for example, with FFBs the right mouse
button can call up the associated block description.

Syntax Check A syntax check can be performed during the program/DFB creation with Project →
Analyze section, see also Syntax Check, p. 330.

Codegeneration Using the Project → Code Generation Options menu command, you can define
options for code generation, see also Code generation, p. 332.

Editing with the
Keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the IL, ST and Data Type Editor,
p. 765).

IEC Conformity For a description of the IEC conformity of the IL programming language see IEC
conformity, p. 779.

Instruction list IL

840 USE 503 00 October 2002 283

10.2 Instructions

At a Glance

Overview This section contains an overview of the instructions for the programming language
instruction list.(IL)

What’s in this
Section?

This section contains the following topics:

Topic Page

General information about instructions 284

Operands 285

Modifier 287

Operators 288

Tag 291

Declaration (VAR...END_VAR) 292

Comment 294

Instruction list IL

284 840 USE 503 00 October 2002

General information about instructions

At a Glance An instruction list is composed of a series of instructions.

Each instruction begins on a new line and consists of:
l an Operator (See Operands, p. 285),
l if necessary with modifier (See Modifier, p. 287) and
l if necessary one or more operands (See IL instruction list operators, p. 295).
Should several operands be used, they are separated by commas. It is possible for
a mark (See Tag, p. 291)to be in front of the instruction, which is followed by a colon.
A comment (See Comment, p. 294) can follow the instruction.
Example:

Structure of the
programming
language

IL is a so-called battery orientated language, i.e. each instruction uses or alters the
current content of the battery (a form of internal cache). The IEC 1131 refers to this
battery as the "result".

For this reason, an instruction list should always begin with the LD operand ("Load
in battery command").

Example of an addition:

START:

Tag

LD
ANDN
ST

A
B
C

(* Keyboard 1 *)
(* AND keyboard 2 *)
(* Ventilator on *)

Operators Operands

Modifier Comments

Command Meaning

LD 10 The value "10" is loaded into the battery.

ADD 25 "25" is added to the battery content.

ST A The result is stored in the "A" variable.
The content of the "A" variable and the battery is now "35". A
possible ensuing instruction would be worked with the battery
content "35", should it not begin with LD.

Instruction list IL

840 USE 503 00 October 2002 285

Comparative operations likewise always refer to the battery. The Boolean result of
the comparison is stored in the battery and is therefore the current battery content.

Example of a comparison:

Operands

At a Glance An operand can be:
l a literal,
l a variable,
l a multi-element variable,
l an element of a multi-element variable,
l a FB/DFB output or
l a direct address.

Access to the
field variables

When accessing the field variable (ARRAY), only literals and variables of ANY_INT
type are permitted in the index entry.

Example: Saving a field variable
LD var1[i]
ST var2.otto[4]

Type conversion The operand and the current accu content must be of the same type. Should
operands of various types be processed, a type conversion must be performed
beforehand.

An exception is the data type TIME in conjunction with the arithmetic operators MUL
and DIV. With both these operators, an operand of TIME data type can be
processed together with an operand of ANY_NUM data type. The result of this
instruction has in this instance the data type TIME.

Command Meaning

LD B The value "B" is loaded into the battery.

GT 10 "10" is compared with the battery content.

ST A The result of the comparison is stored in the "A" variable.
If "B" is less than or equal to "10", the value of both the "A"
variable, and the battery content is "0" (FALSE). If "B" is
greater than or equal to "10", the value of both the "A"
variable, and the battery content is "1" (TRUE).

Instruction list IL

286 840 USE 503 00 October 2002

Example: Integer
variable and real
variable

In the example the integer variable "i1" is converted into a real variable, before being
added to the real variable "r4".

LD i1
INT_TO_REAL
ADD r4
ST r3

Example: Integer
variable and time
variable

In the example the time variable "t2" is multiplied by the integer variable "i4" and the
result is stored in the time variable "t1".

LD t2
MUL i4
ST t1

Default data
types of direct
addresses

The following table shows the default data types of direct addresses:

Using other data
types

Should other data types be assigned as default data types of a direct address, this
must be done through an explicit declaration (VAR…END_VAR (See Declaration
(VAR...END_VAR), p. 292)). VAR…END_VAR cannot be used in Concept for the
declaration of variables. The variable declaration conveniently follows the Variable
Editor (See Variables editor, p. 479).

Input Output Default data type possible data type

%IX,%I %QX,%Q BOOL BOOL

%IB %QB BYTE BYTE

%IW %QW INT INT, UINT, WORD

%ID %QD REAL REAL, DINT, UDINT, TIME

Instruction list IL

840 USE 503 00 October 2002 287

Modifier

At a Glance Modifiers influence the implementation of the preceding operators (see Operators,
p. 288).

Modifier N The Modifier N is used to invert the value of the operands bit by bit.

The modifier can only be used on operands with the ANY_BIT data type.

Example: N In the example C will be "1", when A is "1" and B is "0".

LD A
ANDN B
ST C

Modifier C The modifier C is used to carry out the associated instruction, should the value of
the battery be "1" (TRUE).

The modifier can only be used on operands with the BOOL data type.

Example: C In the example the jump after START is only performed, when A is "1" (TRUE) and
B is "1" (TRUE).

LD AAND BJMPC START

Modifier CN If the modifiers C and N are combined, the associated instruction is only performed,
should the value of the battery be a Boolean "0" (FALSE).

Example: CN In the example, the jump after START is only performed, when A is "0" (FALSE) and/
or B is "0" (FALSE).

LD A
AND B
JMPCN START

Left bracket
modifier "("

The left bracket modifier "(" is used to move back the evaluation of the operand, until
the right bracket operator appears. The number of right bracket operations must be
equal to the number of left bracket modifiers. Brackets can be nested.

Instruction list IL

288 840 USE 503 00 October 2002

Example: Left
bracket "("

In the example E will be "1", if C and/or D is "1", just as A and B are "1".
LD A
AND B
AND(C
OR D
)
ST E

The example can also be programmed in the following manner:

LD A
AND B
AND(
LD C
OR D
)
ST E

Operators

At a Glance An operator is a symbol for:
l an arithmetic operation to be executed,
l a configured operation to be executed or
l the function call up.

Operators are generic, i.e. they are automatically suited to the operands data type.

Note: Operators can be either entered by hand or generated with assistance from
the menu Objects.

Instruction list IL

840 USE 503 00 October 2002 289

Table of
operators

IL programming language operators:

Operator Operator key possible
modifier

possible operand see also

LD Loads the operands
value into the battery

N Literal, variable, direct
address of ANY data
type

Load (LD and
LDN), p. 296

ST Saves the battery
value in the operand

N Variable, direct
address of ANY data
type

Store (ST and
STN), p. 297

S Sets the operand to 1,
when the battery
content is 1

Variable, direct
address of BOOL data
type

Set (S), p. 298

R Sets the operand to 0,
when the battery
content is 1

Variable, direct
address of BOOL data
type

Reset (R),
p. 299

AND Configured AND N, N(, (Literal, variable, direct
address of ANY_BIT
data type

Boolean AND
(AND, AND (),
ANDN, ANDN
()), p. 300

OR Configured OR N, N(, (Literal, variable, direct
address of ANY_BIT
data type

Boolean OR
(OR, OR (),
ORN, ORN ()),
p. 302

XOR Configured exclusive
OR

N, N(, (Literal, variable, direct
address of ANY_BIT
data type

Boolean
exclusive OR
(XOR, XOR (),
XORN, XORN
()), p. 304

ADD Addition (Literal, variable, direct
address of ANY_NUM
data type or TIME
data type

Addition (ADD
and ADD ()),
p. 306

SUB Subtraction (Literal, variable, direct
address of ANY_NUM
data type or TIME
data type

Subtraction
(SUB and SUB
()), p. 307

MUL Multiplication (Literal, variable, direct
address of ANY_NUM
data type or TIME
data type

Multiplication (*),
p. 352

Instruction list IL

290 840 USE 503 00 October 2002

DIV Division (Literal, variable, direct
address of ANY_NUM
data type or TIME
data type

Division (DIV
and DIV ()),
p. 309

GT Comparison: > (Literal, variable, direct
address of
ANY_ELEM data type

Compare on
"Greater Than"
(GT and GT ()),
p. 310

GE Comparison: >= (Literal, variable, direct
address of
ANY_ELEM data type

Compare to
"Greater than/
Equal to" (GE
and GE ()),
p. 311

EQ Comparison: = (Literal, variable, direct
address of
ANY_ELEM data type

Compare to
"EQual to"(EQ
and EQ ()),
p. 312

NE Comparison: <> (Literal, variable, direct
address of
ANY_ELEM data type

Compare to "Not
Equal to" (NE
and NE ()),
p. 313

LE Comparison: <= (Literal, variable, direct
address of
ANY_ELEM data type

Compare to
"Less than/
Equal to" (LE
and LE ()),
p. 314

LT Comparison: < (Literal, variable, direct
address of
ANY_ELEM data type

Compare to
"Less Than"(LT
and LT ()),
p. 315

JMP Jump to tag C, CN TAG Jump to label
(JMP, JMPC
and JMPCN),
p. 316

CAL Calling up a Function
Block or DFB

C, CN FBNAME (item name) Call Function
Block/DFB
(CAL, CALC and
CALCN), p. 319

Operator Operator key possible
modifier

possible operand see also

Instruction list IL

840 USE 503 00 October 2002 291

Tag

At a Glance Tags serve as destinations for Jumps (See Jump to label (JMP, JMPC and JMPCN),
p. 316).

Properties Tag properties:
l Tags must always be the first element in a line.
l Tags must be unique throughout the project/DFB, and are not case-sensitive.
l Tags can be 32 characters long (max.).
l Tags must conform to the IEC name conventions.
l Tags are separated by a colon ":" from the following instruction.
l Tags are only permitted at the beginning of "Expressions", otherwise an

undefined value can be found in the battery.

Destinations Possible destinations are:
l the first LD instruction of a FB/DFB call up with assignment of input parameters

(see start2),
l a normal LD instruction (see start1),
l a CAL instruction, which does not work with assignment of input parameters

(seestart3),
l a JMP instruction (see start4),
l the end of an instruction list (see start5).

FUNCNAME Performing a function Literal, variable, direct
address (data type is
dependent on
function)

Function call,
p. 327

) Editing on-hold
operations

Right
parenthesis ")",
p. 319

Operator Operator key possible
modifier

possible operand see also

Instruction list IL

292 840 USE 503 00 October 2002

Example start2: LD A
 ST counter.CU
 LD B
 ST counter.R
 LD C
 ST counter.PV
 CAL counter
 JMPCN start4
start1: LD A
 AND B
 OR C
 ST D
 JMPC start3
 LD A
 ADD E
 JMP start5
start3: CAL counter (
 CU:=A
 R:=B
 PV:=C)
 JMP start1
start4: JMPC start1
start5:

Declaration (VAR...END_VAR)

At a Glance The VAR instruction is used to declare the function blocks and DFBs used, and
direct addresses if they are not to be used with the default data type. VAR cannot
be used for declaring a variable in Concept. Declaring the variables may
conveniently be done via the Variables editor.
The END_VAR instruction marks the end of the declaration.

Note: The declaration of the FBs/DFBs and direct addresses applies only to the
current section. If the same FFB type or the same address are also used in another
section, the FFB type or the address must be declared again in this section.

Instruction list IL

840 USE 503 00 October 2002 293

Declaration of
function blocks
and DFBs

During declaration for each FB/DFB example, a unique example name is assigned.
The example name is used to mark the function block uniquely in a project. The
example name must be unique in the whole project; no distinction is made between
upper/lower case. The example name must correspond to the IEC Name
conventions, otherwise an error message will be displayed.
After specifying the example name, the function block type, e.g.CTD_DINT is
specified.
In the case of function block types no data type is specified. It is determined by the
data type of the actual parameters. If all actual parameters consist of literals, a
suitable data type will be selected.
Any number of example names may be declared for an FB/DFB.

Example Declaration of function blocks and DFBs

Declaration of
direct addresses

In the case of this declaration, every direct address used whose data type does not
correspond to the default data type will be assigned the required data type (see also
Default data types of direct addresses (See Default data types of direct addresses,
p. 286)).

Example Declaration of direct addresses
VAR

AT %QW1 : WORD ;
AT %IW15 : UINT ;
AT %ID45 : DINT ;
AT %QD4 : TIME ;

END_VAR

Note: The dialog Objects → Insert FFB provides you with a form for creating the
FB-/DFB declaration in a simple and speedy manner.

Note: In contrast to grafic programming languages (FBD, LD), it is possible to call
up multiple calls in FB/DFB examples within IL.

VAR
RAMP_UP, RAMP_DOWN, RAMP_X : TON ;
COUNT : CTU_DINT ;
CLOCK : SYSCLOCK ;
Pulse : TON ;

END_VAR

Item names

Function block Types

Instruction list IL

294 840 USE 503 00 October 2002

Comment

Description Within the IL Editor, comments always start with the string (* and end in the string
*). Any comments may be entered between these two strings. Comments are shown
in colors.

Note: In accordance with IEC 1131-1, comments are only permissible at the end
of a line. However, if you wish to place theses elsewhere, you can do this by using
Options → Preferences → IEC Extensions → Allow comments anywhere in
text (IL).

Note: In accordance with IEC 1131-1, nested comments are not permissible.
However, if you wish to place theses elsewhere, you can do this by using Options
→ Preferences → IEC Extensions → Allow nested comments.

Instruction list IL

840 USE 503 00 October 2002 295

10.3 IL instruction list operators

At a Glance

Overview This section describes the IL instruction list operators.

What’s in this
Section?

This section contains the following topics:

Topic Page

Load (LD and LDN) 296

Store (ST and STN) 297

Set (S) 298

Reset (R) 299

Boolean AND (AND, AND (), ANDN, ANDN ()) 300

Boolean OR (OR, OR (), ORN, ORN ()) 302

Boolean exclusive OR (XOR, XOR (), XORN, XORN ()) 304

Invert (NOT) 305

Addition (ADD and ADD ()) 306

Subtraction (SUB and SUB ()) 307

Multiplication (MUL and MUL()) 308

Division (DIV and DIV ()) 309

Compare on "Greater Than" (GT and GT ()) 310

Compare to "Greater than/Equal to" (GE and GE ()) 311

Compare to "EQual to"(EQ and EQ ()) 312

Compare to "Not Equal to" (NE and NE ()) 313

Compare to "Less than/Equal to" (LE and LE ()) 314

Compare to "Less Than"(LT and LT ()) 315

Jump to label (JMP, JMPC and JMPCN) 316

Call Function Block/DFB (CAL, CALC and CALCN) 319

FUNCNAME 319

Right parenthesis ")" 319

Instruction list IL

296 840 USE 503 00 October 2002

Load (LD and LDN)

LD Description With LD the value of the Operands is downloaded into the accumulator. The data
width of the accumulator adapts itself automatically to the data type of the operand.
This also applies to derived datatypes.

Example LD Example LD

LDN Description The downloaded operand can be negated with the Modifier N (only if the Operand
is of data type ANY_BIT).

LDN Example LDN Example

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ST E The result is saved in "E".

Operation Description

LDN A The value of "A" is inverted and downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ST E The result is saved in "E".

Instruction list IL

840 USE 503 00 October 2002 297

Store (ST and STN)

ST Description With ST the current value of the accu is saved in the operand. The data type of the
operand must therefore agree with the "data type" of the accu.
Depending on whether an LD follows after ST or not, calculation proceeds with the
"old" result.

ST Example ST Example

STN Description The operand to be saved can be negated with the N modifier (only if the operand is
on the ANY_BIT data type).

STN Example ST Example

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ST E The result is saved in "E".

ADD B Afterwards the value of "E" (current accu contents) is added to the value
of "B" again

ST F The result is saved in "F".

LD X The value of "X" is now downloaded onto the accu.

SUB 3 3 is subtracted from the accu contents.

ST Y The result is saved in "Y".

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

STN E The result is inverted and saved in "E".

Instruction list IL

298 840 USE 503 00 October 2002

Set (S)

Description S sets the operand to "1" when the current content of the accu is a Boolean "1".

Example S Example S

Use Usually this operator is used together with the Reset operator R (flip flop) as a pair.

Example RS flip
flop

The example shows an RS flip flop (Reset dominant).

Start behavior The start behavior of PLC’s is divided into cold and warm starts.
l Cold Start

Following a cold start (loading the program with Online → Download) all
variables are set (independently of their type) to "0" or, if available, to their initial
value.

l Warm Start
On a warm start (stopping and starting of the program or Online → Download
changes) different start behavior applies for located variables/direct addresses
and unlocated variables:
l Located variables/direct addresses

During a warm start the located variable/direct address, is set to "0", or to its
initial value if present, via the set instruction.

l Unlocated variables
On a warm start the unlocated variable, set via the set instruction, maintains
its present value (storing behavior).

Command Description

LD A The value of "A" is loaded into the accu.

S OUT If the content of the accu (the value of A) is "1", "OUT" is set to "1".

Command Description

LD A The value of "A" is loaded into the accu.

S OUT If the content of the accu (the value of "A") is "1", "OUT" is set to "1".

LD C The value of "C" is loaded into the accu.

R OUT If the content of the accu (the value of "C") is "1", "OUT" is set to "0".

Note: Should a buffered located variable/direct address be required, please use
the RS or SR function blocks from the block library IEC.

Instruction list IL

840 USE 503 00 October 2002 299

Reset (R)

Description R sets the operand to "0" when the current content of the accu is a Boolean "1".

Example R Example R

Use Usually this operator is used together with the Set operator S (flip flop) as a pair.

Example SR flip
flop

The example shows an SR flip flop (Set dominant).

Start behavior PLC start behavior is divided into cold and warm starts:
l Cold Start

Following a cold start (loading the program with Online → Download) all
variables are set (independently of their type) to "0" or, if available, to their initial
value.

l Warm Start
On a warm start (stopping and starting of the program or Online → Download
changes) different start behavior applies for located variables/direct addresses
and unlocated variables:
l Located variables/direct addresses

On a warm start the located variable/direct address, is set to "0", or to its initial
value if present, via the reset instruction.

l Unlocated variables
On a warm start the unlocated variable, set via the reset instruction, maintains
its present value (storing behavior).

Command Description

LD A The value of "A" is loaded into the accu.

R OUT If the content of the accu (the value of "A") is "1", "OUT" is set to "0".

Command Description

LD A The value of "A" is loaded into the accu.

R OUT If the content of the accu (the value of "A") is "1", "OUT" is set to "0".

LD C The value of "C" is loaded into the accu.

S OUT If the content of the accu (the value of "C") is "1", "OUT" is set to "1".

Note: Should a buffered located variable/direct address be required, please use
the RS or SR function blocks from the block library IEC.

Instruction list IL

300 840 USE 503 00 October 2002

Boolean AND (AND, AND (), ANDN, ANDN ())

AND Description With AND a logical AND link occurs between the accu contents and the operand.
For the data types BYTE and WORD the link is made by bit.

AND Example In the example D is "1", if A, B and C are "1".

AND ()
Description

AND can be used with the "(" left bracket modifier.

AND () Example In the example D is "1", if A is "1" and B or C are "1".

ANDN
Description

AND can be used with the N modifier.

Operation Description

LD A The contents of "A" are downloaded onto the accu.

AND B The accu contents are AND-linked with the contents of "B".

AND C The accu contents (result of the AND link from "A" and "B") are AND-
linked with the contents of "C".

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

AND (The AND link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

OR C The contents of "C" are OR-linked with the accu contents.

) The deferred AND link is solved. The accu contents (result of the OR
link from "B" and "C") are AND-linked with the contents of "A".

ST D The link result is saved in "D".

Instruction list IL

840 USE 503 00 October 2002 301

ANDN Example In the example D is "1", if A is "1" and B and C are "0".

ANDN ()
Description

AND can be used with the N modifier and the "(" left bracket modifier.

ANDN () Example In the example D is "1", if A is "1", B is "0" and C is "1".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ANDN B The contents of "B" are inverted and AND-linked with the accu contents.

ANDN C The contents of "C" are inverted and AND-linked with the accu contents
(Result of the AND link from "A" and "B").

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ANDN (The AND link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

ORN C The contents of "C" are inverted and OR-linked with the accu contents.

) The deferred AND link is solved. The contents of "A" are inverted and
AND-linked with the accu contents (Result of the OR link from "B" and
"C").

ST D The link result is saved in "D".

Instruction list IL

302 840 USE 503 00 October 2002

Boolean OR (OR, OR (), ORN, ORN ())

OR Description With OR a logical OR link occurs between the accu contents and the operand.
For the data types BYTE and WORD the link is made by bit.

OR Example In the example D is "1", if A or B is "1" and C is "1".

OR () Description OR can be used with the "(" left bracket modifier.

OR () Example In the example D is "1", if A is "1" or B and C are "1".

ORN Description ORN can be used with the N modifier.

Operation Description

LD A The contents of "A" are downloaded onto the accu.

OR B The accu contents are OR-linked with the contents of "B".

AND C The accu contents (result of the AND link from "A" and "B") are AND-
linked.

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

OR (The OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The deferred OR link is solved. The accu contents (Result of the AND
link from "B" and "C") are OR linked with the contents of "A".

ST D The link result is saved in "D".

Instruction list IL

840 USE 503 00 October 2002 303

ORN Example In the example D is "1", if A is "1" or B is "0" and C is "1".

ORN ()
Description

ORN can be used with the N modifier and the "(" left bracket modifier.

ORN () Example In the example D is "1", if A is "1" or B or C are "0".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ORN B The contents of "B" are inverted and OR linked with the accu contents.

AND C The contents of "C" are AND linked with the accu contents (result of the
OR link from "A" and "B").

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ORN (The OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The deferred OR link is solved. The accu contents (result of the AND
link from "B" and "C") are OR linked with the contents of "A".

ST D The link result is saved in "D".

Instruction list IL

304 840 USE 503 00 October 2002

Boolean exclusive OR (XOR, XOR (), XORN, XORN ())

XOR description With XOR, a logical exclusive OR link is made between the accu contents and the
operand.
If more than two operands are linked the result is "1" for an odd number of 1
conditions and "0" for an even number of 1 conditions.
For the data types BYTE and WORD the link is made by bit.

XOR example In the example, D is "1" if A or B is "1". If A and B have the same status (both "0" or
both "1"), D is "0".

XOR ()
description

XOR can be used with the "(" left bracket modifier.

XOR () example In the example, D is "1" if A or the AND link from B and C is "1". If A and the result
of the AND link have the same status (both "0" or both "1"), D is "0".

XORN
description

XOR can be used with the N modifier.

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XOR B The accu contents are linked with the contents of the "B" exclusive OR.

ST D The equation result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XOR (The exclusive OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The reset exclusive OR link is performed. The accu contents (result of
the AND link from "B" and "C") are exclusive OR-linked with the
contents of "A".

ST D The equation result is saved in "D".

Instruction list IL

840 USE 503 00 October 2002 305

XORN example In the example, D is "1" if A and B have the same contents (both "1" or both "0’). If
A and B do not have the same status, D is "0".

XORN ()
description

XORN can be used with the "(" left bracket and N modifiers.

XORN () example In the example, D is "1" if A and the AND link from B and C have the same contents
(both "1" or both "0’). If A and B and the AND link from B and C do not have the same
status, D is "0".

Invert (NOT)

NOT Description The accumulator content is inverted with NOT.
NOT can only be used with Boolean data types (BIT, BYTE, WORD).

Example NOT Example NOT

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XORN B The contents of "B" are inverted and exclusive OR-linked with the accu
contents.

ST D The equation result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XORN (The exclusive OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The reset exclusive OR link is performed. The accu contents (result of the AND
link from "B" and "C") are exclusive OR-linked with the contents of "A".

ST D The equation result is saved in "D".

Note: This operator does not conform to IEC 61131-1.

Operation Description

LD A The contents of "A" are downloaded onto the accumulator.

NOT The accumulator content is inverted.

ST B The result is saved in "B".

Instruction list IL

306 840 USE 503 00 October 2002

Addition (ADD and ADD ())

ADD Description With ADD the value of the operand is added to the accu contents.

ADD Example The example corresponds to the formula D = A + B + C

ADD ()
Description

ADD can be used with the "(" left bracket modifier.

ADD () Example The example corresponds to the formula D = A + (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ADD C The accu contents (sum of "A"+"B") are added to the value of "C".

ST D The result is saved in "D".

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD (The addition is deferred until the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The deferred addition is solved. The accu contents (result of "B"-"C")
are added to the value of "A".

ST D The result is saved in "D".

Instruction list IL

840 USE 503 00 October 2002 307

Subtraction (SUB and SUB ())

SUB Description With SUB the value of an operand is subtracted from the accu contents.

SUB Example The example corresponds to the formula D = A - B - C

Description SUB
()

SUB can be used with the "(" left bracket modifier.

Example SUB () The example corresponds to the formula D = A - (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

SUB B The value of "B" is subtracted from the accu contents.

SUB C The value of "C" is subtracted from the accu contents (result of "A"-"B").

ST D The result is saved in "D".

Operation Description

LD A The value of "A" is downloaded onto the accu.

SUB (The subtraction is reset until the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The reset subtraction is performed. The accu contents (result of "B"-
"C") are subtracted from the value of "A".

ST D The result is saved in "D".

Instruction list IL

308 840 USE 503 00 October 2002

Multiplication (MUL and MUL())

MUL Description With MUL the accu contents are multiplied by the value of an operand.

MUL Example The example corresponds to the formula D = A x B x C

Multiplication of
TIME values

Normally the operand and the current accu contents must be of the same data type.
The TIME data type in relation to MUL is an exception. In this case the accu content
of data type TIME can be used together with an operand of data type ANY_NUM.
After the execution of this instruction list the accu contents have, in this case, the
data type TIME.

Example MUL
with TIME values

The example corresponds to the formula t1 = t2 x i4.

Description MUL
()

MUL can be used with the "(" left bracket modifier.

Example MUL () The example corresponds to the formula D = A x (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

MUL B The accu contents are multiplied by the value of "B".

MUL C The accu contents (Result of "A"x"B") are multiplied by the value of "C".

ST D The result is saved in "D".

Operation Description

LD t2 The value of the time variables "t2" are downloaded onto the accu.

MUL i4 The accu contents are multiplied by the value of the integer variable "i4".

ST t1 The result is saved in the time variable "t1".

Operation Description

LD A The value of "A" is downloaded onto the accu.

MUL (The multiplication is reset until the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The reset multiplication is performed. The accu contents (result of "B"-"C") are
multiplied by the value of "A".

ST D The result is saved in "D".

Instruction list IL

840 USE 503 00 October 2002 309

Division (DIV and DIV ())

DIV Description With DIV the accu contents are divided by the value of an operand.

DIV example The example corresponds to the formula D = A / B / C.

Division of TIME
values

Normally the operand and the current accu contents must be of the same data type.
One exception is the data type TIME in connection with DIV. In this case the accu
contents of data type TIME can be processed with an operand of data type
ANY_NUM. After the execution of this instruction list the accu contents have, in this
case, the data type TIME.

Example MUL
with TIME values

The example corresponds to the formula t1 = t2 / i4.

DIV ()
Description

DIV can be used with the "(" left bracket modifier.

DIV () Example The example corresponds to the formula D = A / (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

DIV B The accu contents are divided by the value of "B".

DIV C The accu contents (result of "A"/"B") are divided by the value of "C".

ST D The result is saved in "D".

Operation Description

LD t2 The value of the time variables "t2" is downloaded onto the accu.

DIV i4 The accu contents are divided by the value of the integer variable "i4".

ST t1 The result is saved in the time variable "t1".

Operation Description

LD A The value of "A" is downloaded onto the accu.

DIV (The division is reset until it the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The reset division is performed. The value of "A" is divided by the accu
contents (result of "B"-"C").

ST D The result is saved in "D".

Instruction list IL

310 840 USE 503 00 October 2002

Compare on "Greater Than" (GT and GT ())

Description GT With GT the accu contents is compared with the operand contents. If the accu
contents is greater than the operand contents, the result is a boolean "1". If the accu
contents is less than or equal to the operand contents, the result is a boolean "0".

Example GT Example GT

DEscription GT () GT can be used witht the modifier left bracket "(".

Examplel GT () Example GT ()

Command Description

LD A The value of "A" is loaded into the accu.

GT 10 The accu content is compared with the value ‘’0’’.

ST D If the value of ‘’A’’ was less than ‘’10’’ (or equal ‘’10’’), the value ‘’0’’ is
saved in ‘’D’’.
If the value of ‘’A’’ was greater than ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

GT (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of "A" was less than "B"-"C" (or equal "B"-"C"), the value "0"
is saved in "D".
If the value of ‘’A’’ was greater than "B"-"C", the value ‘’1’’ is saved in
‘’D’’.

Instruction list IL

840 USE 503 00 October 2002 311

Compare to "Greater than/Equal to" (GE and GE ())

Description GE With GE the accu contents is compared with the operand contents. If the accu
contents is greater than or equal to the operand contents, the result is a Boolean "1".
If the accu contents is less than the operand contents, the result is a Boolean "0".

GE example E.g. GE

Description GT () GE can be used with the modifier left bracket "(".

GE () example GE () example

Command Description

LD A The value of "A" is loaded into the accu.

GE 10 The accu content is compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was less than ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was equal to or greater than ‘’10’’, the value ‘’1’’ is
saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

GE (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was less than "B"-"C", the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was equal to or greater than ‘’B’’ – "C", the value ‘’1’’
is saved in ‘’D’’.

Instruction list IL

312 840 USE 503 00 October 2002

Compare to "EQual to"(EQ and EQ ())

EQ description With EQ the accu contents are compared with the operand contents. If the accu
contents are equal to the operand contents, the result is a Boolean "1". If the accu
contents are not equal to the operand contents, the result is a Boolean "0".

EQ example EQ example

Description EQ () EQ can be used with the modifier left bracket "(".

EQ () example EQ () example

Command Description

LD A The value of "A" is loaded into the accu.

EQ 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was not equal to ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was equal to ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

EQ (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was not equal to "B"-"C", the value ‘’0’’ is saved in
‘’D’’.
If the value of ‘’A’’ was equal to "B"-"C", the value ‘’1’’ is saved in ‘’D’’.

Instruction list IL

840 USE 503 00 October 2002 313

Compare to "Not Equal to" (NE and NE ())

NE description With NE the accu contents are compared with the operand contents. If the accu
contents are not equal to the operand contents, the result is a Boolean "1". If the
accu contents are equal to the operand contents, the result is a Boolean "0".

NE example NE example

Description NE () NE can be used with the modifier left bracket "(".

NE () example NE () example

Command Description

LD A The value of "A" is loaded into the accu.

NE 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was equal to ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was not equal to ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

NE (The comparison is deferred until the right bracket has been reached..

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was equal to "B"-"C", the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was not equal to "B"-"C", the value ‘’1’’ is saved in
‘’D’’.

Instruction list IL

314 840 USE 503 00 October 2002

Compare to "Less than/Equal to" (LE and LE ())

Description With LE the accu contents are compared with the operand contents. If the accu
contents are less than or equal to the operand contents, the result is a Boolean "1".
If the accu contents are greater than the operand contents, the result is a Boolean
"0".

LE example LE example

Description LE () LE can be used with the modifier left bracket "(".

LE () example LE () example

Command Description

LD A The value of "A" is loaded into the accu.

LE 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was greater than ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was less than or equal to ‘’10’’, the value ‘’1’’ is saved
in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

LE (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was greater than "B"-"C", the value ‘’0’’ is saved in
‘’D’’.
If the value of "A" was less than "B"-"C" (or equal to "B"-"C"), the value
"1" is saved in "D".

Instruction list IL

840 USE 503 00 October 2002 315

Compare to "Less Than"(LT and LT ())

LT description With LT the accu contents are compared with the operand contents. If the accu
contents are less than the operand contents, the result is a Boolean "1". If the accu
contents are greater than or equal to the operand contents, the result is a Boolean
"0".

LT example LT example

Description LT () LT can be used with the modifier left bracket "(".

LT () example LT () example

Command Description

LD A The value of "A" is loaded into the accu.

LT 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was greater than ‘’10’’ (or equal to ‘’10’’), the value
‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was less than ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

LT(The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was greater than ‘’B’’-"C" (or equal to ‘’B’’-"C"), the
value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was less than "B"-"C", the value ‘’1’’ is saved in ‘’D’’.

Instruction list IL

316 840 USE 503 00 October 2002

Jump to label (JMP, JMPC and JMPCN)

JMP Description With JMP a conditional or unconditional jump to a label is solved.

The label is used as an address and identifies the destination instruction. The
destination instruction can be above or below the jump instruction. A label must
always be the first element of a line. The label (max. 32 characters) must not be
duplicated anywhere else in the project and there is no case sensitivity. The labels
are separated by a colon ":" from the following instruction. Labels should only be at
the beginning of "expressions", since otherwise an undefined value can be in the
accu.

JMP Example In the example an unconditional jump to the label "start" is solved.

JMPC and
JMPCN
Description

JMP can be used with the modifiers C and CN (only if the operand is of data type
ANY_BIT).

Operation Description

start: LD A The value of "A" is downloaded onto the accu.

 AND B Logical AND link between the accu contents and the
contents of "B".

 OR C Logical OR link between the accu contents and the contents
of "C".

 ST D The result of the links is saved in "D".

 JMP start Independent of the accu contents (value of "D") a jump to
label "start" is solved.

Instruction list IL

840 USE 503 00 October 2002 317

JMPC Example In the example a conditional jump (with "1") to label "start" is solved.

JMPCN Example In the example a conditional jump (by "0") to label "start" is solved.

Operation Description

start: LD A The value of "A" is downloaded onto the accu.

 AND B Logical AND link between the accu contents and the
contents of "B".

 OR C Logical OR link between the accu contents and the contents
of "C".

 ST D The result of the links is saved in "D".

 JMPC start The jump is only solved if the accu contents (value of "D")
has the value "1".

Operation Description

start: LD A The value of "A" is downloaded onto the accu.

 AND B Logical AND link between the accu contents and the
contents of "B".

 OR C Logical OR link between the accu contents and the contents
of "C".

 ST D The result of the links is saved in "D".

 JMPCN start The jump is only solved if the accu contents (value of "D")
has the value "0".

Instruction list IL

318 840 USE 503 00 October 2002

Addresses Possible addresses are:
l each LD instruction (see start1)
l each CAL instruction (see start2)
l the end of an instruction list (see start3)
Jumps cannot be made into other sections.

Example for possible addresses:

Operation Description

VAR

Timer_1 : TON;

END_VAR

Declaration of the
function blocks TON.

 LD IN1_BOOL

 ST OT1_BOOL

 JMPC start1 Jump to start1, if
OT1_BOOL = 1

 LD IN1_BOOL

 AND IN2_BOOL

 JMPCN start2 Jump to start2, if
OT1_BOOL = 0

 ST OT2_BOOL

start1: LD IN1_INT

 ADD IN2_INT

 ST OT1_INT

 JMP start3 Unconditional jump after
start3, JMPC/JMPCN is
not allowed here as the
accu contents are not of
type BOOL.

start2: CAL Timer_1 (IN:=IN3_BOOL, PT:=t#6s)

 LD Timer_1.ET

 ST OT1_TIME

 LD Timer_1.Q

 ST OT3_BOOL

start3

Instruction list IL

840 USE 503 00 October 2002 319

Call Function Block/DFB (CAL, CALC and CALCN)

CAL Description With CAL a function block or a DFB is conditionally or unconditionally called.

CALC and
CALCN
Description

CAL can be used with the Modifiers C and CN (only if the operand is of data type
ANY_BIT).

Use of Function
Blocks and DFBs

Use of Function Blocks and DFBs, p. 321

FUNCNAME

Description A function is performed with the function name (see Function call, p. 327).

Right parenthesis ")"

At a Glance With the right parenthesis ")" the editing of the reset operator is started. The number
of right parenthesis operations must be equal to the number of left bracket modifiers.
Brackets can be nested.

Example In the example E will be "1", if C and/or D is "1", just as A and B are "1".

LD A
AND B
AND(C
OR D
)
ST E

Instruction list IL

320 840 USE 503 00 October 2002

10.4 Call up of functions, Function Blocks (EFBs) and
Derived Function Blocks (DFBs)

At a Glance

Overview This section describes the call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs).

What’s in this
Section?

This section contains the following topics:

Topic Page

Use of Function Blocks and DFBs 321

Invoking a Function Block/DFB 323

Function call 327

Instruction list IL

840 USE 503 00 October 2002 321

Use of Function Blocks and DFBs

Use of Function
Blocks and DFBs

Function blocks are provided by Concept in the form of libraries. The function block
logic is created in C++ programming language and cannot be altered in the IL Editor.
The names of the available function blocks can be taken from the block libraries.
DFBs are function blocks, which have been defined in Concept-DFB. There is no
difference between functions and function blocks for DFBs. They are always
handled as function blocks regardless of their internal structure.
The use of function blocks and DFBs consists of three parts in IL:
l the declaration (See Declaration, p. 322),
l the function block/DFB invocation (See Invoking a Function Block/DFB, p. 323),
l the use of the function block/DFB outputs (See Use of the Function Block/DFB

Outputs, p. 322).

Function Blocks
with Limited Use

Use of the following EFBs from the DIAGNO block library is limited in IL (the function
blocks can be used, but the expanded diagnostic information cannot be evaluated):
l XACT, XACT_DIA,
l XDYN_DIA,
l XGRP_DIA,
l XLOCK,
l XPRE_DIA,
l XLOCK_DIA,
l XREA_DIA

Function Blocks
with Limited
Invocation

For EFBs which have one or more outputs with data type ANY but no inputs with
data type ANY (generic outputs/inputs), the block invocation can only take place in
compact form (See CAL with a list of the input/output parameters (compact form),
p. 325). e.g. in the block library LIB984:
l GET_3X
l GET_4X

Note: The declaration of the function block/DFB invocation can take place
manually or you can create the block end and the assignment of the parameters
using the menu command Objects → Insert FFB.

Instruction list IL

322 840 USE 503 00 October 2002

Unusable
Function Blocks

Unusable Function Blocks:
l EFBs which use several registers with only the entry for the first register on the

input/output (e.g. MBP_MSTR from the COMM block library) cannot be used.
l EFBs, which contain outputs with input information (e.g. GET_BIT, R2T from the

LIB984 block library) cannot be used
l The following EFBs from the COMM block library cannot be used for the technical

reasons listed above:
l CREADREG
l CREAD_REG
l CWRITREG
l CWRITE_REG
l READREG
l READ_REG
l WRITEREG
l WRITE_REG
l MBP_MSTR

l The following EFBs from the LIB984 block library cannot be used for the technical
reasons listed above:
l FIFO
l GET_BIT
l IEC_BMDI
l LIFO
l R2T
l SET_BIT
l SRCH
l T2T

Declaration Before invoking the function block/DFBs, they must be declared using VAR and
END_VAR (See Declaration (VAR...END_VAR), p. 292).

Function Block/
DFB Invocation

Invoking a Function Block/DFB, p. 323

Use of the
Function Block/
DFB Outputs

The outputs of the function block/DFBs can always be used when a variable (read
only) can also be used.

Formal parameter

Instance name

LD COUNT.Q
ST %QX1

Instruction list IL

840 USE 503 00 October 2002 323

Invoking a Function Block/DFB

At a Glance The invocation can be made in 4 forms:
l using CAL with a list of the input parameters (See CAL with a list of the input

parameters, p. 323),
l using CAL with a list of the input/output parameters (compact form) (See CAL

with a list of the input/output parameters (compact form), p. 325),
l using CAL and Load/Save the input parameters (See CAL with Loading/Saving

of Input Parameters, p. 325),
l when using the input operators (See Using the Input Operators, p. 326).

CAL with a list of
the input
parameters

Function blocks/DFBs can be invoked using an instruction consisting of the CAL
instruction followed by the instance names for the FBs/DFBs and a list, in brackets,
of value assignments (current parameters) to formal parameters. The order of the
formal parameters in a function block invocation is not significant. The list of the
current parameters can be broken straight after a comma. It is not necessary for all
formal parameters to be assigned a value. If a formal parameter is not assigned a
value, the initial value defined in the variable editor is used when executing the
function block. If an initial value is not defined, the default value (0) is used.

Using the CAL (..) instruction, setting the parameters for the function blocks/DFBs is
ended. Then no more values can be sent to the FB/DFB. Only the output values can
be read.

Note: Even if the function block has no inputs or the input parameters are not to be
defined, the function block should be invoked (CAL EFB_XY ()) before the
outputs can be used. Otherwise the initial values for the outputs are given, i.e. "0".

Note: In IL, unlike the graphic programming languages (FBD, LD), FB/DFB
instances can be invoked multiple times.

Note: Inputs of type VARINOUT (See also Use of the DFB in IL, p. 428) always
have to be assigned a value.

Instruction list IL

324 840 USE 503 00 October 2002

Example CAL with a list of the input parameters

or

Invocation of the function block in FBD.

CAL CLOCK ()

:
LD COUNT.Q
ST out

CAL COUNT (CU:=CLOCK.CLK3, R:=%IX10, PV:=100)

Instance name
Formal parameter

Current parameter

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CAL CLOCK ()
CAL COUNT(

CU:=CLOCK.CLK3,
R:=reset,
PV:=100)

:

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;
Pulse : TP ;

END_VAR

LD COUNT.Q
ST out

SYSCLOCK

CLOCK

CLK1
CLK2
CLK3
CLK4
CLK5

TIMER

CTU_DINT

COUNT

Q

CV

CU
R
PV

out
%1:00010

100

Instruction list IL

840 USE 503 00 October 2002 325

CAL with a list of
the input/output
parameters
(compact form)

Block invocation and the assignments for the inputs/outputs are also possible in a
more compact form, which saves runtime:
VAR

CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CAL CLOCK () ;
CAL COUNT (CU:=CLOCK.CLK3, R:=%IX10, PV:=100, Q=>out)

CAL with
Loading/Saving
of Input
Parameters

Function blocks/DFBs can be invoked using an instruction list, which consists of
loading the current parameters, followed by saving them in the formal parameters,
followed by the CAL instruction. The order in which the parameters are loaded and
saved is not significant. The list of the current parameters can be broken directly
after a comma. It is not necessary for all formal parameters to be assigned a value.
If a formal parameter is not assigned a value, the initial value defined in the variable
editor is used when executing the function block. If an initial value is not defined, the
default value (0) is used.

Using the CAL FBNAME instruction, setting the parameters for the function blocks/
DFBs is ended. Then no more values can be sent to the FB/DFB. Only the output
values can be read.
Only load and save instructions for the current FB/DFBs to be configured are
allowed to be between the first load instruction for the current parameters and
invocation of the function block/DFBs. All other instructions are not allowed in this
position.

Example CAL with Loading/Saving of Input Parameters

Note: Inputs of type VARINOUT (See also Use of the DFB in IL, p. 428) always
have to be assigned a value.

CAL CLOCK

LD CLOCK.CLK3
ST COUNT.CU
LD %IX10
ST COUNT.R
LD 100
ST COUNT.PV
CAL COUNT
:
:
LD COUNT.Q
:

Current parameter

Formal parameter

Instance name

Instruction list IL

326 840 USE 503 00 October 2002

Using the Input
Operators

Function blocks can be called using an instruction list which consists of loading the
current parameters, followed by saving them in the formal parameters, followed by
an input operator. The order in which the parameters are loaded and saved is not
significant. The list of the current parameters can be broken directly after a comma.
It is not necessary for all formal parameters to be assigned a value. If a formal
parameter is not assigned a value, the initial value defined in the variable editor is
used when executing the function block. If an initial value is not defined, the default
value (0) is used.

The possible input operators for the different function blocks can be taken from the
table. Other input operators are not available.

Using input operator invocation, setting the parameters for the function blocks is
ended. Then no more values can be sent to the FB. Only the output values can be
read.
Only load and save instructions for the current FB being configured are allowed to
be between the first load instruction for the current parameters and the input
operator for the function block. All other instructions are not allowed in this position.

Note: Inputs of type VARINOUT (See also Use of the DFB in IL, p. 428) always
have to be assigned a value.

Input operator FB Type

S1, R SR

S, R1 RS

CLK R_TRIG

CLK F_TRIG

CU, R, PV CTU_INT, CTU_DINT, CTU_UINT, CTU_UDINT

CD, LD, PV CTD_INT, CTD_DINT, CTD_UINT, CTD_UDINT

CU, CD, R, LD, PV CTUD_INT, CTUD_DINT, CTUD_UINT, CTUD_UDINT

IN, PT TP

IN, PT TON

IN, PT TOF

Instruction list IL

840 USE 503 00 October 2002 327

Example Using the Input Operators

Function call

Use of functions Functions are provided by Concept in the form of libraries. The logic of the functions
is created in the programming language C++ and cannot be changed in the IL editor.
You will find the names of the available functions in the block libraries.
Functions are called using an instruction list consisting of loading the first actual
parameter into the battery and the name of the function. If necessary, this will be
followed by a list of further actual parameters. The sequence in which the formal
parameters in a function call are enumerated is not significant. Immediately following
a comma, the list of the actual parameters may be wrapped. The result of the
function becomes the battery content after the function has been executed, and can
be saved using ST (See Store (ST and STN), p. 297) in an operand, or may directly
be processed further.

The picture shows calling a function in IL.

The picture shows calling a function in FDP.

Instance name
Input operator

CAL CLOCK

LD CLOCK.CLK3
ST COUNT.CU
LD %IX10
ST COUNT.R
LD 100
PV COUNT

Current parameter

Formal parameter

Note: The declaration of function calls may either be generated manually, or you
may generate the block rump and the allocation of the parameters using the menu
command Objects → Insert FFB.

LD A
LIMIT_REAL B,C
ST OUT

LIMIT_REAL

.1.2

MN
IN
MX

OUT
B
C

A

Instruction list IL

328 840 USE 503 00 October 2002

Functions which
cannot be used

Functions having one or more outputs of data type ANY but no inputs of data type
ANY (generic outputs/inputs) cannot be used in IL.

Calling a
function with an
input

If the function to be executed has only got one input, the name of the function is not
followed by a list of actual parameters.

Calling a
function with
multiple inputs

If the function to be executed has several inputs, there are two possibilities for
assigning the actual parameters.
l The name of the function is followed by a list of the actual parameters

l The name of the function is followed by a list of the value assignments (actual
parameters) to the formal parameters.

Function calls
including
processing of the
battery value

If the value to be processed is already in the battery, it is not necessary to use the
loading instruction.
LIMIT_REAL B,C
ST result

Function calls
including further
direct
processing of the
result

If the result is immediately to be processed further it is not necessary to include the
memory instruction.
LD A
LIMIT_REAL B,C
MUL E

Result of the function

Set of parameters

Function NameLD A
SIN_REAL
ST result

LIMIT_REAL B,C

Set of parameters
Function Name

LD A

ST result Set of parameters

Set of parameters Formal parameters

LD A

ST result

Set of parameters

LIMIT_REAL IN:=C, MX:=B

Instruction list IL

840 USE 503 00 October 2002 329

10.5 Syntax check and Code generation

At a Glance

Overview This section describes the syntax check and the code generation with the IL
instruction list.

What’s in this
Section?

This section contains the following topics:

Topic Page

Syntax Check 330

Code generation 332

Instruction list IL

330 840 USE 503 00 October 2002

Syntax Check

Introduction A syntax check can be performed during the program/DFB creation with Project →
Analyze section.

Syntax Check
Options

With the menu command Options → Preferences → IEC Extensions... → IEC-
Extensions the syntax check options can be defined.

Allow Case
Insensitive
Keywords

If the check box Allow case insensitive keywords is checked, upper and lower
case for all keywords is enabled.

Allow nested
comments

If the check box Nested comments authorized is checked, nested comments can
be entered. There are no limits to the nesting depths.

Comments
everywhere in
the text
permitted (IL)

If the check box Comments everywhere in the text permitted (IL) is checked,
comments can be placed anywhere in the IL section.

Additional
Variable Names
Permitted (IL)

If the check box Additional variable names permitted (IL) is checked, the use of
additional variable names (e.g. "S1" or "IN") is possible in IL. (These variables can
always be used in FBD, LD and ST.)

Allow Leading
Digits in
Identifiers

If the check box Allow leading digits in identifiers is checked, figures as the first
character of identifiers (i.e. variable names, step names, EFB names) are possible.
Identifiers, which consist solely of figures are, however, not authorized, they must
contain at least one letter.

Note: The settings in this dialog are used in the project description (PRJ.DSK) and
in the Concept installations description (CONCEPT.DSK), i.e. they are valid for the
entire Concept installation.
If a project is opened, that was created using different settings (e.g. Allow nested
comments in the project and not in the actual Concept Installation), errors can
occur when opening the project.

Instruction list IL

840 USE 503 00 October 2002 331

Unassigned
Parameters
Cause Warnings

The IEC 1131-3 permits functions and Function Blocks to be called up without
calling up the assignment of all the input parameters. These unused parameters are
implicitly assigned a 0, or they retain the value from the last call up (Function Blocks
only).

If in the menu command Options → Preferences → Analysis... → Analysis
Preferences the check box Unassigned parameters cause warnings is checked,
a list of these unused parameters is displayed in the message window when
generating the code.

Instruction list IL

332 840 USE 503 00 October 2002

Code generation

At a Glance The menu command Project → Options for code generation is used to define
options for code generation.

Fastest code
(restricted
check)

If the check box Fastest Code (restricted check) is activated, a runtime-optimized
code will be generated.

This runtime optimization is achieved with integer arithmetic (e.g. "+" or "-") with
simple process commands instead of EFB calls.

Process commands are much faster than EFB calls, but they generate no error
messages, such as e.g. Arithmetic or Array overrun. This option should only be used
if it has been ensured that the program is free of arithmetic errors.

Example: Fastest
Code

LD in1
ADD 1
ST out1

If Fastest Code (restricted check) is selected, the addition "in1 + 1" is executed
with the process command "add". The code is now faster than if EFB ADD_INT had
been called up. However, no runtime error is generated if "in1" is 32767. In this case,
"out1" would overrun from 32767 to -32768!

Activate loop
control

This check box activates a software watchdog for continuous loops.

If this check box is checked, with loops within IL and ST sections, it is tested whether
these loops are again exited within a certain time. The time authorized depends on
the manually defined watchdog time. The authorized time for all loops combined
constitutes 80% of the Hardware watchdog time. In this way triggering of the
hardware watchdog by endless loops is disabled. If a time consuming loop or an
endless loop is detected, processing of the affected section will stop, an entry in the
Event display will be generated and processing of the next section will begin. In the
next cycle, the segment will be re-processed until a time consuming loop or an
endless loop is detected once again, or until the segment is completed correctly.

Note: If the hardware watchdog stops the PLC when a time consuming loop or an
endless loop is detected, this option should not be activated. The hardware
watchdog itself is not switched off by this function.

Instruction list IL

840 USE 503 00 October 2002 333

10.6 Online functions of the IL instruction list

At a Glance

Overview This section describes the online functions of the IL instruction list.

What’s in this
Section?

This section contains the following topics:

Topic Page

Animation 334

Monitoring field 337

Instruction list IL

334 840 USE 503 00 October 2002

Animation

At a Glance There are two animation modes available in the IL and ST editor:
l Animation of binary variables
l Animation of selected variables

Animation of
binary variables

The animation of the selected objects is activated with the menu command Online
→ Animate selection.

In this mode, the current signal status of binary values is shown in the editor window.

The animation of direct addresses and direct FB input/outputs is not possible.

Animation of
selected
variables

The dialog box for the display of the current signal status of selected variables is
activated with the menu command Online → Watch Selected.
Furthermore, at least one variable, which can be animated, must be selected.
Variables and multi-element variables that can be selected are denoted by red,
green or yellow script.

Properties of the
dialog box

The name of the selected variables or multi-element variables are shown in the
dialog box, with the data type and current value.

The dialog box is modeless, i.e. it remains open until it is closed or the animation is
terminated. If several text language sections are open and clicked on in this dialog
box, a dialog box is opened for each section. The name of the section is displayed
in the dialog box heading.

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in the Online help (Tip:
Search the online help for the index reference "Colors").

Inserting several
variables

The procedure for inserting several variables is as follows:

Step Action

1 Select the desired variables or multi-element variables.

2 Accept this with Online → Animate selected in the dialog box.

Instruction list IL

840 USE 503 00 October 2002 335

Inserting all
variables

The procedure for inserting all the variables is as follows:

Altering column
width

The procedure for altering the column width is as follows:

Multi-element
variables

With multi-element variables the display of the elements can be switched on or off.

Step Action

1 Select the whole section with CTRL+A.

2 Migrate all variables and multi-element variables of the dialog section with
Online → Animate selcted to the dialog box.

Step Action

1 Position the mouse pointer on the right margin button.

Reaction: The mouse pointer changes its shape to .

2 Alter the column width by dragging with the left mouse button depressed.

Action Function Condition

Click on symbol + or
key +

The next component level
for the current line is shown.

When using the keyboard, the cursor
must remain on a + symbol.

Key x (number lock) All component levels for the
current line are shown.

The cursor must remain on a + symbol.

Click on symbol - or
key -

All component levels for the
current line, which are
shown, are grayed out.

When using the keyboard, the cursor
must remain on a - symbol.

CTRL++ The display of the
components of the current
line is restored (Restoration
of display before the last
activation of -

The cursor must remain on a + symbol.

CTRL+x (number
lock)

All component levels of the
current multi-element
variables are shown.

The cursor must remain on an element
of a multi-element variable.

CTRL+- All component levels of the
current multi-element
variables are grayed out.

The cursor must remain on an element
of a multi-element variable.

CTRL+end to go to the end of the table

CTRL+Pos1 to go to the start of the table

Instruction list IL

336 840 USE 503 00 October 2002

Saving and
restoring
animation

With the menu command Save animation the settings (e.g. Position of monitoring
fields) of the current animation can be saved. After terminating this animation, the
animation can be restored with the same settings via the menu command Restore
animation.

Note: To avoid inconsistencies between the program on the PC and the PLC and
to also have the animation available in the next Concept sitting, the project must
be saved when quitting Concept

Instruction list IL

840 USE 503 00 October 2002 337

Monitoring field

At a Glance With the menu command Online → Selected in Inspect field a monitoring field can
be entered in the section. The current value of the assigned variables is shown in
this monitoring field.

Limitations The generation of monitoring fields for direct addresses and direct FB input/outputs
(INST.Q) is not possible.

Display of multi-
element
variables

With multi-element variables, the value of the first element is shown.

If a view of more elements is desired, this can be defined in the dialog Settings for
monitoring field, which is called up by double clicking on the monitoring field.

Minimum and
maximum values

In the dialog Settings for monitoring field, which can be called up with a double
click on the monitoring field, a minimum and maximum value can be defined for the
monitored variable. If the variable violates one of these thresholds, this will be
displayed in color in the monitoring field.

An overview of the color scheme and the meaning of each color can be found in the
Online help (Tip: Search the online help for the index reference "Colors").

Generating a
monitoring field

The procedure for generating a monitoring field is as follows:

Step Action

1 Select a variable (e.g. double-click on variable).

2 Execute the menu command Online → Selected in Inspect field.
Reaction: The section animation is started (gray section background) and the
cursor symbol changes into box symbol.

3 Position the cursor to any position in the section and click with the left mouse
button.
Reaction: A monitoring field, consisting of variable name and value, is
generated for the selected variable on the chosen position.

Instruction list IL

338 840 USE 503 00 October 2002

10.7 Creating a program with the IL instruction list

Instruction list IL

840 USE 503 00 October 2002 339

Creating a program in the IL instruction list.

At a Glance The following description contains an example of creating a program in IL instruction
list. The creation of a program in IL instruction list is organized into 2 main steps:

Generating a
section

The procedure for generating a section is as follows:

Step Action

1 Generating a section (See Generating a section, p. 339)

2 Creating the logic (See Creating the logic, p. 340)

Step Action

1 Using the menu command File → New section... and enter a section name.

Note: The section name (max. 32 characters) must be clear throughout the
project, so that there is no difference regarding case sensitivity. If the name
entered already exists, a warning is given and another name must be chosen.
The section name must correspond to the IEC name conventions, otherwise an
error message arises.

Note: In accordance with IEC1131-3, only letters are permitted as the first
character of names. Should numbers be required as the first character, however,
the menu command Options → Preferences → IEC Extensions... → Allow
leading digits in identifiers .

Instruction list IL

340 840 USE 503 00 October 2002

Creating the
logic

The procedure for creating the logic is as follows:

Step Action

1 Declare the Function Block and DFBs, which are to be used, with assistance
from VAR…END_VAR.

Example:
VAR

 RAMP_UP, RAMP_DOWN, RAMP_X : TON ;

 COUNT : CTU_DINT ;

END_VAR

2 Declare the variables and their initial value in the Variable Editor.

3 Create the logic of the program.

Example:
 LD A

 SIN_REAL

 MUL_REAL B,C

 ST D

 LD Y

 AND X

 JMPC endl

 LD M

 SIN_REAL

 MUL_REAL N,O

 ST P

 JMP end2

end1: LD D

 ST %QD4

end2: LD P

 ST %QD5

4 save the section with the menu command Data file → Save project .

840 USE 503 00 October 2002 341

11
Structured text ST

At a Glance

Overview This Chapter describes the programming language structured text ST which
conforms to IEC 1131.

What’s in this
Chapter?

This chapter contains the following sections:

Section Topic Page

11.1 General information about structured Text ST 343

11.2 Expressions 345

11.3 Operators of the programming language of structured ST text 350

11.4 Assign instructions 357

11.5 Call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs)

372

11.6 Syntax check and code generation 379

11.7 Online functions of the ST programming language 382

11.8 Creating a program with the structured ST text 384

Structured text ST

342 840 USE 503 00 October 2002

Structured text ST

840 USE 503 00 October 2002 343

11.1 General information about structured Text ST

Structured text ST

344 840 USE 503 00 October 2002

General Information about the ST Structured Text

Introduction With the programming language of structured text (ST), it is possible, for example,
to call up Function Blocks, perform functions and assignments, conditionally perform
instructions and repeat tasks.

Spell Check Spelling is immediately checked when key words, separators and comments are
entered. If a key word, separator or comment is recognized, it is identified with a
color surround. If unauthorized key words (instructions or operators) are entered, it
is likewise identified in color.

IEC Conventions The IEC 1131 does not permit the input of direct addresses in the usual Concept
form. To input direct addresses see Operands, p. 346.

In accordance with IEC 113-3, key words must be entered in upper case. Should the
use of lower case letters be required, they can be enabled in the dialog box Options
→ Preferences → IEC Extensions... → IEC Extensions with the option Allow
case insensitive keywords.

Blank spaces and tabs have no influence upon the syntax and can be used freely.

Context help With the right mouse button an object can be selected and at the same time a
context sensitive menu called up. Therefore, for example, with FFBs the right mouse
button can call up the associated block description.

Syntax Check A syntax check can be performed during the program/DFB creation with Project →
Analyze section, see also Syntax Check, p. 380.

Codegeneration Using the Project → Code Generation Options menu command, you can define
options for code generation, see also Code generation, p. 381.

Editing with the
Keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the IL, ST and Data Type Editor,
p. 765).

IEC Conformity For a description of the IEC conformity of the ST programming language see IEC
conformity, p. 779.

Structured text ST

840 USE 503 00 October 2002 345

11.2 Expressions

At a Glance

Overview This section contains an overview of the expressions in the programming language
of structured text ST.
expressions consists of operands and operators.

What’s in this
Section?

This section contains the following topics:

Topic Page

Operands 346

Operators 347

Structured text ST

346 840 USE 503 00 October 2002

Operands

At a Glance An operand can be:
l a literal,
l a variable,
l a multi-element variable,
l an element of a multi-element variable,
l a function call up,
l a FB/DFB output or
l a direct address.

Access to the
field variables

When accessing field variables (ARRAY), only literals and variables of ANY_INT
type are permitted in the index entry.

Example: Using field variables
var1[i] := 8 ;
var2.otto[4] := var3 ;
var4[1+i+j*5] := 4 ;

Type conversion Data types, which are in an instruction of processing operands, must be identical.
Should operands of various types be processed, a type conversion must be
performed beforehand.

An exception is the data type TIME in conjunction with the arithmetic operators "*"
(multiplication) and "/" (division). With both these operators, an operand of TIME
data type can be processed together with an operand of ANY_NUM data type. The
result of this instruction has in this instance the data type TIME.

Example: Integer
variable and real
variable

In the example the integer variable i1 is converted into a real variable before being
added to the real variable r4.

r3 := r4 + SIN_REAL(INT_TO_REAL(i1)) ;

Example: Integer
variable and time
variable

In the example the time variable t2 is multiplied by the integer variable i4 and the
result is stored in the time variable t1.

t1 := t2 * i4 ;

Structured text ST

840 USE 503 00 October 2002 347

Default data
types of direct
addresses

The following table shows the default data types of direct addresses:

Using other data
types

Should other data types be assigned as default data types of a direct address, this
must be done through an explicit declaration (VAR…END_VAR (See Declaration
(VAR...END_VAR), p. 360)). VAR…END_VAR cannot be used in Concept for the
declaration of variables. The variable declaration is performed conveniently by using
the Variable Editor (See Variables editor, p. 479).

Operators

Introduction An operator is a symbol for:
l an arithmetic operation to be executed or
l a configured operation to be executed or
l the function call up.

Operators are generic, i.e. they are automatically matched with the operands data
type.

Expression
Evaluation

The evaluation of an expression consists of applying the operators to the operands,
in the sequence, which is defined by the order of the operators rank (see table). The
operator with the highest rank in an expression is performed first, followed by the
operator with the next highest rank etc. until the evaluation is complete. Operators
with the same rank are performed from left to right, as they are written in the
expression. This sequence can be altered with the use of parentheses.

Input Output Default data type possible data type

%IX,%I %QX,%Q BOOL BOOL

%IB %QB BYTE BYTE

%IW %QW INT INT, UINT, WORD

%ID %QD REAL REAL, DINT, UDINT, TIME

Note: Operators can be either entered manually or generated with assistance from
the menu Objects → Operators.

Structured text ST

348 840 USE 503 00 October 2002

Table of
Operators

ST programming language operators:

Operator Meaning possible operand Order of
rank

see also

() Use of
parentheses:

Expression 1
(highest)

Use of
parentheses "()",
p. 351

FUNCNAME
(current
parameter
list)

Function editing
(call up)

Expression, literal, variable,
direct address of ANY data
type

2 Function
Invocation, p. 377

- Negation Expression, literal, variable,
direct address of
ANY_NUM data type

3 Negation (-),
p. 352

NOT Complement Expression, literal, variable,
direct address of ANY_BIT
data type

3 Complement
formation (NOT),
p. 352

** Exponentiation Expression, literal, variable,
direct address of REAL data
type (basis), ANY_NUM
(exponent)

4 Exponentiation
(**), p. 351

* Multiplication Expression, literal, variable,
direct address of
ANY_NUM data type or
TIME data type

5 Multiplication (*),
p. 352

/ Division Expression, literal, variable,
direct address of
ANY_NUM data type

5 Division (/), p. 353

MOD Modulo Expression, literal, variable,
direct address of ANY_INT
data type

5 Modulo (MOD),
p. 353

+ Addition Expression, literal, variable,
direct address of
ANY_NUM data type or
TIME data type

6 Addition (+),
p. 353

- Subtraction Expression, literal, variable,
direct address of
ANY_NUM data type or
TIME data type

6 Subtraction (-),
p. 354

< Less-than
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison with
"Less Than"(<),
p. 355

Structured text ST

840 USE 503 00 October 2002 349

 > Greater-than
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison on
"Greater Than"
(>), p. 354

<= Less or equal to
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison with
"Less than or
Equal to" (<=),
p. 355

>= Greater or
equal to
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison on
"Greater than/
Equal to" (>=),
p. 354

= Equality Expression, literal, variable,
direct address of
ANY_ELEM data type

8 Comparison with
"EQual to" (=),
p. 354

<> Inequality Expression, literal, variable,
direct address of
ANY_ELEM data type

8 Comparison with
"Not Equal to"
(<>), p. 355

&, AND configured AND Expression, literal, variable,
direct address of ANY_BIT
data type

9 Boolean AND
(AND or &), p. 356

XOR Configured
exclusive OR

Expression, literal, variable,
direct address of ANY_BIT
data type

10 Boolean Exclusive
OR (XOR), p. 356

OR Configured OR Expression, literal, variable,
direct address of ANY_BIT
data type

11
(lowest)

Boolean OR (OR),
p. 356

Operator Meaning possible operand Order of
rank

see also

Structured text ST

350 840 USE 503 00 October 2002

11.3 Operators of the programming language of
structured ST text

At a Glance

Overview This section describes the operators of the programming language of structured ST
text.

What’s in this
Section?

This section contains the following topics:

Topic Page

Use of parentheses "()" 351

FUNCNAME 351

Exponentiation (**) 351

Negation (-) 352

Complement formation (NOT) 352

Multiplication (*) 352

Division (/) 353

Modulo (MOD) 353

Addition (+) 353

Subtraction (-) 354

Comparison on "Greater Than" (>) 354

Comparison on "Greater than/Equal to" (>=) 354

Comparison with "EQual to" (=) 354

Comparison with "Not Equal to" (<>) 355

Comparison with "Less Than"(<) 355

Comparison with "Less than or Equal to" (<=) 355

Boolean AND (AND or &) 356

Boolean OR (OR) 356

Boolean Exclusive OR (XOR) 356

Structured text ST

840 USE 503 00 October 2002 351

Use of parentheses "()"

Description Brackets are used to alter the execution sequence of the operators.

Example of
parentheses "()"

If the operands A, B, C, and D have the values "1", "2", "3", "and -4",

A+B-C*D

has the result 15 and

(A+B-C)*D

has the result 0.

FUNCNAME

Description The function processing is used to perform functions (see Function Invocation,
p. 377).

Exponentiation (**)

Description For exponentiation "**" the value of the first operand (basis) is potentiated with that
of the second operand (exponent).

Example
exponentiation
"**"

In the example OUT will be"625.0", when IN1 is "5.0" and IN2 is "4.0".
OUT := IN1 ** IN2 ;

Note: Exponentiation operates in the ST programming languageand with a
resolution of 23 bits. For the graphic languages the exponentiation operates with a
resolution of 24 bits..

Structured text ST

352 840 USE 503 00 October 2002

Negation (-)

Description During negation "-" a sign reversal for the value of the operand takes place.

Example
negation "-"

In the example OUT will be "-4", when IN1 is "4".
OUT := - IN1 ;

Complement formation (NOT)

Description In NOT a bit by bit inversion of the operands takes place.

Example NOT In the example OUT will be"0011001100", when IN1 is "1100110011".
OUT := NOT IN1 ;

Multiplication (*)

Description For multiplication "**" the value of the first operand is multiplied with that of the
second operand (exponent).

Example
multiplication "*"

OUT := IN1 * IN2 ;

Multiplication of
TIME values

Normally the data types of the operands to be processed must be identical to an
instruction. However, the multiplication forms an exception when combined with
data type TIME. In this case an operand with the datentype TIME combined with an
operanden of data type ANY_NUM can be processed. In this case the result of this
instruction has the data type TIME.

Example:
Multiplication of
TIME values

In the example the Time variable t2 is multiplied by the integer variables i4 and the
result is deposited in the t1 Time variables.
t1 := t2 * i4 ;

Structured text ST

840 USE 503 00 October 2002 353

Division (/)

Description For division "/" the value of the first operand is divided by that of the second operand
(exponent).

Example division
"/"

OUT := IN1 / IN2 ;

Division of TIME
values

Normally the data types of the operands to be processed must be identical to an
instruction. However the division forms an exception when combined with data type
TIME. In this case an operand with the data type TIME combined with an operand
of data type ANY_NUM can be processed. In this case the result of this instruction
has the data type TIME.

Example division
of TIME values

In the example the Time variable t2 is divided by the integer variables i4 and the
result is deposited in the t1 Time variables.
t1 := t2 / i4 ;

Modulo (MOD)

Description For MOD the value of the first operandis divided by that of the second operand and
the remainder of thedivision (Modulo) is displayed as the result.

Example MOD OUT := IN1 MOD IN2 ;

Addition (+)

Description For the addition "+" the value of the first operand is added to that of the second
operand.

Example
addition "+"

OUT := IN1 + IN2 ;

Structured text ST

354 840 USE 503 00 October 2002

Subtraction (-)

Description For the subtraction "-" the value of the second operand is subracted from that of the
first operand.

Example
Subtraction "-"

OUT := IN1 - IN2 ;

Comparison on "Greater Than" (>)

Description With ">" the value of the first operand is compared with that of the second operand.
If the first operand is greater than the second, the result is a boolean "1". If the first
operand is less than or equal to the second, the result is a Boolean "0".

Example greater
than ">"

In the example "OUT" will be "1" if "IN1" is greater than "10" and "0", if "IN1" is less
than "0".
OUT := IN1 > 10 ;

Comparison on "Greater than/Equal to" (>=)

Description With ">=" the value of the first operand is compared to that of the second operand.
If the first operation is greater than or equal to the second, the result is a Boolean
"1". If the first operand is less than the second, the result is a Boolean "0".

Example greater
than/equal to
">="

In the example "OUT"will be "1"if "IN1" is greater than/equal to "10" and otherwise
"0".
OUT := IN1 >= 10 ;

Comparison with "EQual to" (=)

Description The value of the first operation is compared with the value of the second with "=". If
the first operation is equal to the second, the result is a Boolean "1". If the first
operation is not equal to the second, the result is a Boolean "0".

Example equal to
"="

In the example, "OUT" will be "1", if "IN1" is equal to "10" – otherwise it will be "0".
OUT := IN1 = 10 ;

Structured text ST

840 USE 503 00 October 2002 355

Comparison with "Not Equal to" (<>)

Description The value of the first operation is compared with the value of the second with "<>".
If the first operation is not equal to the second, the result is a Boolean "1". If the first
operation is equal to the second, the result is a Boolean "0".

Example Not
equal to "<>"

In the example, "OUT" will be "1", if "IN1" is not equal to "10" – otherwise it will be "0".
OUT := IN1 <> 10 ;

Comparison with "Less Than"(<)

Description The value of the first operation is compared with the value of the second with "<". If
the first operation is smaller than the second, the result is a Boolean "1". If the first
operation is bigger than or the same size as the second, the result is a Boolean "0".

Example less
than "<"

In the example, "OUT" will be "1", if "IN1" is less than "10" – otherwise it will be "0".
OUT := IN1 < 10 ;

Comparison with "Less than or Equal to" (<=)

Description The value of the first operation is compared with the value of the second with "<=".
If the first operation is less than or equal to the second, the result is a Boolean "1".
If the first operation is greater than the second, the result is a Boolean "0".

Example less
than or equal to
"<="

In the example, "OUT" will be "1", if "IN1" is less than or equal to "10" – otherwise it
will be "0".
OUT := IN1 <= 10 ;

Structured text ST

356 840 USE 503 00 October 2002

Boolean AND (AND or &)

Description With "AND" or "&" a configured AND link occurs between the operations.
With the BYTE and WORD data types, the link is performed bit by bit.

Example
Boolean "AND or
&"

In the examples, "OUT" will be "1" if "IN1", "IN2" and "IN3" are "1".
OUT := IN1 AND IN2 AND IN3 ;

or

OUT := IN1 AND IN2 AND IN3 ;

Boolean OR (OR)

Description With OR, a configured OR link occurs between the operations.
With the BYTE and WORD data types, the link is performed bit by bit.

Example
Boolean OR
"OR"

In the example, "OUT" will be "1" if "IN1", "IN2" or "IN3" is "1".
OUT := IN1 OR IN2 OR IN3 ;

Boolean Exclusive OR (XOR)

Description With XOR, a configured Exclusive OR link occurs between the operations.
With the BYTE and WORD data types, the link is performed bit by bit.

Example
Boolean
Exclusive OR
"XOR"

In the example "OUT" will be "1", if "IN1" and "IN2" are not equal. If "IN1" and "IN2"
have the same state (both "0" or "1"), "OUT" is "0".
OUT := IN1 XOR IN2 ;

Linking more
than 2 operations

If more than two operations are linked, the result is "1" with an odd number of 1-
states and "0" with an even number of 1-states.

Example:
Linking more
than 2 operations

In the example, "OUT" will be "1" if 1, 3 or 5 operations are "1". "OUT" will be "0" if
0, 2 or 4 operations are "1".
OUT := IN1 XOR IN2 XOR IN3 XOR IN4 XOR IN5;

Structured text ST

840 USE 503 00 October 2002 357

11.4 Assign instructions

At a Glance

Overview This section describes the instructions for the programming language of structured
ST text.

What’s in this
Section?

This section contains the following topics:

Topic Page

Instructions 358

Assignment 359

Declaration (VAR...END_VAR) 360

IF...THEN...END_IF 362

ELSE 363

ELSIF...THEN 364

CASE...OF...END_CASE 365

FOR...TO...BY...DO...END_FOR 366

WHILE...DO...END_WHILE 368

REPEAT...UNTIL...END_REPEAT 370

EXIT 371

Empty instruction 371

Comment 371

Structured text ST

358 840 USE 503 00 October 2002

Instructions

Description Instructions are the "commands" of the ST programming language.

Instructions must be completed by semicolons. Several instructions can be entered
in one line (separated by semicolons).

Note: Instructions can be either entered manually or generated using the menu
Objects.

Structured text ST

840 USE 503 00 October 2002 359

Assignment

At a Glance When an assignment is performed, the current value of a single or multi-element
variable is replaced by the result of the evaluation of the expression
An assignment consists of a variable specification on the left side, followed by the
assignment operator ":=", followed by the expression to be evaluated. Both variables
must be of the same data type.

Assigning the
value of a
variable to
another variable

Assignments are used to assign the value of a variable to another variable.
The instruction
A := B ;
is for instance used to replace the value of the variable "A" by the current value of
the variable "B". If "A" and "B" are of an elementary data type, the individual value
"B" is passed to "A". If "A" and "B" are of a derived data type, the values of all
elements are passed from "B" to "A".

Assigning the
value of a literal
to a variable

Assignments are used to assign a literal to variables.
The instruction
C := 25 ;
is for instance used to assign the value "25" to the variable "C".

Assigning the
value of an FFB
to a variable

Assignments are used to assign a value to a variable which is returned by a function
or a function block.
The instruction
B := MOD_INT(C,A) ;
is for instance used to assign the modulo of the variables "C" and "A" to the variable
"B".
The instruction
A := TON1.Q ;
is for instance used to assign to the variable "A" the value of the output "Q" of the
function block TONI.

Assigning the
value of an
operation to a
variable

Assignments are used to assign to a variable a value which is the result of an
operation.
The instruction
X := (A+B-C)*D ;
is for instance used to assign to the variable "X" the result of the operation "(A+B-
C)*D".

Structured text ST

360 840 USE 503 00 October 2002

Declaration (VAR...END_VAR)

At a Glance The VAR instruction is utilized for declaring the function blocks used and DFBs and
declaring direct addresses if they are not to be used with the default data type. VAR
cannot be used for declaring a variable in Concept. Declaring the variables may
conveniently be done via the Variables editor.
The END_VAR instruction marks the end of the declaration.

Declaration of
function blocks
and DFBs

Every time a FB/DFB example is used, a unique example name is assigned when it
is declared. The example name is used to mark the function block uniquely in a
project. The example name must be unique in the whole project; no distinction is
made between upper/lower case. The example name must correspond to the IEC
Name conventions, otherwise an error message will be displayed.
After specifying the example name, the function block type, e.g.CTD_DINT is
specified.
In the case of function block types no data type is specified. It is determined by the
data type of the actual parameters. If all actual parameters consist of literals, a
suitable data type will be selected.
Any number of example names may be declared for an FB/DFB.

Note: The declaration of the FBs/DFBs and direct addresses applies only to the
current section. If the same FFB type or the same address are also used in another
section, the FFB type or the address must be declared again in this section.

Note: The dialog Objects → Insert FFB provides you with a form for creating the
FB-/DFB declaration in a simple and speedy manner.

Note: In contrast to grafic programming languages (FBD, LD), it is possible to
execute multiple calls in FB/DFB examples within ST.

Structured text ST

840 USE 503 00 October 2002 361

Example Declaration of function blocks and DFBs

Declaration of
direct addresses

In the case of this declaration, every direct address used whose data type does not
correspond to the default data type will be assigned the required data type (see also
Default data types of direct addresses (See Default data types of direct addresses,
p. 286)).

Example Declaration of direct addresses
VAR

AT %QW1 : WORD ;
AT %IW15 : UINT ;
AT %ID45 : DINT ;
AT %QD4 : TIME ;

END_VAR

VAR
RAMP_UP, RAMP_DOWN, RAMP_X : TON ;
COUNT : CTU_DINT ;
CLOCK : SYSCLOCK ;
Pulse : TON ;

END_VAR

Exemplar-Namen

Funktionsbaustein-Typen

Structured text ST

362 840 USE 503 00 October 2002

IF...THEN...END_IF

Description The IF instruction determines that an instruction or a group of instructions will only
be executed if its related Boolean expression has the value 1 (true). If the condition
is 0 (false), the instruction or the instruction group will not be executed.
The THEN-command identifies the end of the condition and the beginning of the
command(s).
The END_IF instruction marks the end of the instruction(s).

Example
IF...THEN...END_
IF

If FLAG is 1, the instructions will be executed; if FLAG is 0, they will not be executed.
IF FLAG THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
END_IF ;

Example IF
NOT...THEN...EN
D_IF

Using NOT, the condition may be inverted (execution of both instructions at 0).
IF NOT FLAG THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
END_IF ;

Related topic(s) ELSE (See ELSE, p. 363)
ELSEIF (See ELSIF...THEN, p. 364)

Note: Any number of IF…THEN…ELSE…END_IF commands may be nested to
generate complex selection commands.

Structured text ST

840 USE 503 00 October 2002 363

ELSE

Description The ELSE command always comes after an IF…THEN-, ELSIF…THEN- or CASE-
command.
If the ELSE command comes after IF or ELSIF, the command or group of commands
will only be executed if the associated Boolean expressions of the IF and ELSIF
command have the 0 value (false). If the condition of the IF or ELSIF command is 1
(true), the command or group of commands will not be executed.
If the ELSE command comes after CASE, the command or group of commands will
only be executed if no identification contains the value of the selector. If an identifi-
cation contains the value of the selector, the command or group of commands will
not be executed.

E.g. ELSE IF A>B THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
ELSE
 C:=A + B ;
 B:=C - A ;
END_IF ;

Related topic(s) IF (See IF...THEN...END_IF, p. 362)
ELSIF (See ELSIF...THEN, p. 364)
CASE (See CASE...OF...END_CASE, p. 365)

Note: As many IF…THEN…ELSE…END_IF-commands as required can be
encapsulated to create complex selection commands.

Structured text ST

364 840 USE 503 00 October 2002

ELSIF...THEN

Description The ELSIF-command always comes after an IF…THEN-command. The ELSIF-
command establishes that a command or group of commands will only be executed
if the associated Boolean expression of the IF-command has the 0 value (false) and
the associated Boolean expression of the ELSIF command has the 1 value (true). If
the condition of the IF-command is 1 (true) or the condition of the ELSIF-command
is 0 (false), the command or group of commands will not be executed.
The THEN-command identifies the end of the ELSIF-condition(s) and the beginning
of the command(s).

E.g.
ELSIF…THEN

IF A>B THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=SUB_REAL(C,A) ;
ELSIF A=B THEN
 C:=ADD_REAL(A,B) ;
 B:=MUL_REAL(C,A) ;
END_IF ;

E.g.
Encapsulated
Commands

IF A>B THEN
 IF B=C THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 ELSE
 B:=SUB_REAL(C,A) ;
 END_IF ;
ELSIF A=B THEN
 C:=ADD_REAL(A,B) ;
 B:=MUL_REAL(C,A) ;
ELSE
 C:= DIV_REAL (A,B) ;
END_IF ;

Related topic(s) IF (See IF...THEN...END_IF, p. 362)
ELSE (See ELSE, p. 363)

Note: As many IF…THEN…ELSIF…THEN…END_IF-commands as required can
be encapsulated to create complex selection commands.

Structured text ST

840 USE 503 00 October 2002 365

CASE...OF...END_CASE

Description The CASE instruction consists of an INT data type expression (the "selector") and a
list of instruction groups. Each group is provided with a marke which consists of one
or several whole numbers (ANY_INT) or zones of whole number values. The first
group is executed by instructions, whose marke contains the calculated value of the
selector. Otherwise none of the instructions will be executed.
The OF instruction indicates the start of the mark.
An ELSE instruction may be carried out within the CASE instruction, whose
instructions are executed if no mark contains the selector value.
The END_CASE instruction marks the end of the instruction(s).

Example
CASE...OF...END
_CASE

Example CASE...OF...END_CASE

Related topic(s) ELSE (See ELSE, p. 363)

Selector

Mark

2: B:=C - A ;
CASE SELECT OF 1,5: C:=SIN_REAL(A) * COS_REAL(B) ;

6..10: C:=C * A ;
ELSE B:=C * A ;

C:=A / B ;
END_CASE ;

Structured text ST

366 840 USE 503 00 October 2002

FOR...TO...BY...DO...END_FOR

Description The FOR instruction is used when the number of occurrences can be determined in
advance. Otherwise WHILE (See WHILE...DO...END_WHILE, p. 368) or REPEAT
(See REPEAT...UNTIL...END_REPEAT, p. 370) are used
The FOR instruction repeats an instruction sequence until the END_FOR
instruction. The number of occurrences is determined by start value, end value and
control variable. Start value, end value and the control variable must be the same
type of data (DINT or INT) and may not be modified by one of the repeated
instructions. The FOR instruction increments the control variable value of one start
value to an end value. The increment value has the default value 1. If a different
value is to be used, it is possible to specify an explicit increment value (variable or
constant). The control variable value is checked before each renewed loop running.
If it is outside the start value and end value range, the loop will be left.
Before running the loop for the first time a check is made to determine whether
incrementation of the control variables, starting from the initial value, is moving
towards the end value. If this is not the case (e.g. initial value ≤ end value and
negative increment), the loop will not be processed.
Using this ruler, continuous loops will be prevented.

The DO command identifies the end of the repeat definition and the beginning of the
instruction(s).
Repetition may be terminated early by using the EXIT instruction. The END_FOR
instruction marks the end of the instruction(s).

Example: FOR
with increment
"1"

FOR with increment "1"

FOR with
increment not
equal to "1"

If an increment other than "1" is to be used, this can be defined by BY. The
increment, the initial value, the end value, and the control variable must be of the
same data type (DINT or INT). The criterion for the processing direction (forward,
backward) is the sign of the BY expression. If this expression is positive, the loop will
run forward; if it is negative, the loop will run backward.

Note: For the end value of the data type DINT the range of values -2 147 483 646
to 2 147 483 645 will apply.

C:= C * COS_REAL(B) ;

Control variable

END_FOR ;

FOR i:= 1 TO 50 DO

Start value End value

Structured text ST

840 USE 503 00 October 2002 367

Example:
Counting
forward in two
steps

Counting forward in two steps

Example:
Counting
backward

Counting backward
FOR i:= 10 TO 1 BY -1 DO (* BY < 0 : Backward loop *)

C:= C * COS_REAL(B) ; (* Application will be executed 10
x *)
END_FOR ;

Example:
"Unique" loops

The loops in the example are run once precisely, as the initial value = end value. In
this context it does not matter whether the increment is positive or negarive.
FOR i:= 10 TO 10 DO (* Unique Loop *)

C:= C * COS_REAL(B) ;
END_FOR ;

or

FOR i:= 10 TO 10 BY -1 DO (* Unique Loop *)
C:= C * COS_REAL(B) ;

END_FOR ;

Example: Critical
loops

If in the example there is the increment j > 0, the instructions will not be executed,
as the situation initial value > end value only permits an increment ≤ 0. A continuous
loop can only arise if the increment is 0. If this situation is identified during the section
analysis, an error message will be generated. If the error is identified during running
time, an error message will be generated in the event viewer.
FOR i:= 10 TO 1 BY j DO (* Backward loop *)

C:= C * COS_REAL(B) ;
END_FOR ;

If in the example there is the increment j < 0, the instructions will not be executed,
as the situation initial value < end value only permits an increment ≥ 0. A continuous
loop can only arise if the increment is 0. If this situation is identified during the section
analysis, an error message will be generated. If the error is identified during running
time, an error message will be generated in the event viewer.
FOR i:= 1 TO 10 BY j DO (* Forward loop *)

C:= C * COS_REAL(B) ;
END_FOR ;

C:= C * COS_REAL(B) ; (* instruction will be 5 x executed *

Control variable

END_FOR ;

Start value End value Increment

FOR i:= 1 TO 10 BY 2 DO (* BY > 0 : Forward loop *)

Structured text ST

368 840 USE 503 00 October 2002

Example: Illegal
loops

Illegal loops
FOR i:= 1 TO 10 BY 0 DO (* Error with Section- *)

C:= C * COS_REAL(B) ; (* Analysis, as continous loop *)
END_FOR ;

or

FOR i:= 1 TO 10 BY j DO (* at j=0, Error message *)
C:= C * COS_REAL(B) ; (* in of Event indicator *)

END_FOR ;

WHILE...DO...END_WHILE

Description The WHILE instruction has the effect that a sequence of instructions will be
executed repeatedly until its related Boolean expression is 0 (false). If the
expression is false right from the start, the group of instructions will not be executed
at all.
The DO command identifies the end of the repeat definition and the beginning of the
command(s).
The occurrence may be terminated early using the EXIT.
The END_WHILE instruction marks the end of the instruction(s).

WARNING

Risk of program crashing

WHILE must not be used to carry out synchronization between
processes, e.g. as a "waiting loop" with an externally determined end
condition. This means that a continous loop must not be created, unless
you prevent this using the function Project → Options for code
generation → Activate loop control.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Structured text ST

840 USE 503 00 October 2002 369

Example
WHILE...DO...EN
D_WHILE

 var := 1
WHILE var <= 100 DO
 var := var + 4;
END_WHILE ;

Related topic(s) EXIT (See EXIT, p. 371)

WARNING

Risk of program crashing

WHILE must not be used in an algorithm for which fullfilling the loop end
condition or the execution of an EXIT instruction can not be guaranteed.
This means that a continuous loop must not be created, as this may
result in crashing the program, unless you prevent this by using the
function Project → Options for code generation → Activate loop
control.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Structured text ST

370 840 USE 503 00 October 2002

REPEAT...UNTIL...END_REPEAT

Description The REPEAT instruction has the effect that a sequence of instructions is executed
repeatedly (at least once), until its related Boolean condition is 1 (true).
The UNTIL instruction marks the end condition.
The occurrence may be terminated early using the EXIT.
The END_REPEAT instruction marks the end of the instruction(s).

Example
REPEAT...UNTIL.
..END_REPEAT

 var := -1
REPEAT
 var := var + 2
 UNTIL var >= 101
END_REPEAT ;

Related topic(s) EXIT (See EXIT, p. 371)

WARNING

Risk of program crashing

REPEAT must not be used to carry out synchronization between
processes, e.g. as a "waiting loop" with an externally determined end
condition. This means that a continous loop must not be created, unless
you prevent this using the function Project → Options for code
generation → Activate loop control.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

WARNING

Risk of program crashing

REPEAT must not be used in an algorithm for which fullfilling the loop
end condition or the execution of an EXIT instruction can not be
guaranteed. This means that a continuous loop must not be created, as
this may result in crashing the program, unless you prevent this by
using the function Project → Options for code generation → Activate
loop control.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Structured text ST

840 USE 503 00 October 2002 371

EXIT

Description The EXIT command is used to terminate repeat instructions (FOR, WHILE,
REPEAT) before the end condition has been met.
If the EXIT instruction is within a nested occurrence, the innermost loop (in which
EXIT is situated) is left. Next, the first instruction following the loop end (END_FOR,
END_WHILE or END_REPEAT) is executed.

Example EXIT If FLAG has the value 0, SUM will be 15 following execution of the instructions.
If FLAG has the value 1, SUM will be 6 following execution of the instructions.
SUM : = 0 ;
FOR I := 1 TO 3 DO
 FOR I := 1 TO 2 DO
 IF FLAG=1 THEN EXIT;
 END_IF;
 SUM := SUM + J ;
 END_FOR ;
 SUM := SUM + I ;
END_FOR

Related topic(s) CASE (See CASE...OF...END_CASE, p. 365)
WHILE (See WHILE...DO...END_WHILE, p. 368)
REPEAT (See REPEAT...UNTIL...END_REPEAT, p. 370)

Empty instruction

Description Empty instructions are generated by a semicolon (;).

Comment

Description Within the ST editor, comments start with the string (* and end in the string *). Any
comments may be entered between these two strings. Comments may be entered
in any position in the ST editor. Comments are shown in colour.

Note: In accordance with IEC 1131-1, nested comments are not permissible.
However, if you wish to place theses elsewhere, you can release them by using
Options → Preferences → IEC Extensions → Allow nested comments.

Structured text ST

372 840 USE 503 00 October 2002

11.5 Call up of functions, Function Blocks (EFBs) and
Derived Function Blocks (DFBs)

At a Glance

Overview This section describes the call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs).

What’s in this
Section?

This section contains the following topics:

Topic Page

Function Block/DFB Invocation 373

Function Invocation 377

Structured text ST

840 USE 503 00 October 2002 373

Function Block/DFB Invocation

Use of Function
Blocks and DFBs

Function blocks are provided by Concept in the form of libraries. The logic of the
function blocks is created in C++ programming language and cannot be altered in
the ST Editor. The names of the available function blocks can be taken from the
block libraries.
DFBs are function blocks which can be defined in Concept-DFB. There is no
difference between functions and function blocks for DFBs. They are always
handled as function blocks regardless of their internal structure.
The use of function blocks and DFBs consists of three parts in ST:
l the declaration (See Declaration, p. 374),
l the function block/DFB invocation (See Function Block/DFB Invocation, p. 375),
l the use of the function block/DFB outputs (See Use of the Function Block/DFB

Outputs, p. 376).

Function Blocks
with Limited Use

Use of the following EFBs from the DIAGNO block library is limited in ST (function
blocks can be used, but the expanded diagnostic information cannot be evaluated):
l XACT, XACT_DIA
l XDYN_DIA
l XGRP_DIA
l XLOCK,
l XPRE_DIA
l XLOCK_DIA
l XREA_DIA

Function Blocks
with Limited
Invocation

For EFBs which have one or more outputs with data type ANY but no inputs with
data type ANY (generic outputs/inputs), the block invocation can only take place in
compact form (See Function Block/DFB Invocation in Compact Form, p. 376). e.g.
in the block library LIB984:
l GET_3X
l GET_4X

Note: The declaration of the function block/DFB invocation can take place
manually or you can create the block end and the assignment of the parameters
using the menu command Objects → Insert FFB.

Structured text ST

374 840 USE 503 00 October 2002

Unusable
Function Blocks

Unusable Function Blocks:
l EFBs which use several registers with only the entry for the first register on the

input/output (e.g. MBP_MSTR from the COMM block library) cannot be used.
l EFBs which contain outputs with input information (e.g. GET_BIT, R2T from the

LIB984 block library) cannot be used
l The following EFBs from the COMM block library cannot be used for the technical

reasons listed above:
l CREADREG
l CREAD_REG
l CWRITREG
l CWRITE_REG
l READREG
l READ_REG
l WRITEREG
l WRITE_REG
l MBP_MSTR

l The following EFBs from the LIB984 block library cannot be used for the technical
reasons listed above:
l FIFO
l GET_BIT
l IEC_BMDI
l LIFO
l R2T
l SET_BIT
l SRCH
l T2T

Declaration Before invoking the function block/DFBs, they must be declared using VAR and
END_VAR (See Declaration (VAR...END_VAR), p. 360).

Structured text ST

840 USE 503 00 October 2002 375

Function Block/
DFB Invocation

Function blocks/DFBs are invoked using an instruction consisting of the instance
name for the FB/DFB, which is followed by a list, in brackets, of value assignments
(current parameters) to formal parameters. The order of the formal parameters in a
function block invocation is not significant. It is not necessary for all formal
parameters to be assigned a value. If a formal parameter is not assigned a value,
the initial value defined in the variable editor is used when executing the function
block. If an initial value is not defined, the default value (0) is used.

Function block/DFB invocation:

Declaration and invocation of a function block in ST:
VAR

CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CLOCK () ;
COUNT (CU:=CLOCK.CLK3, R:=reset, PV:=100) ;
out:=COUNT.Q ;
current:=COUNT.CV ;

Note: Inputs of type VARINOUT (See also Use of the DFB in FBD/LD, p. 425)
always have to be assigned a value.

Note: In ST, unlike the graphic programming languages (FBD, LD), FB/DFB
instances can be called multiple times.

Note: Even if the function block has no inputs or the input parameters are not to be
defined, the function block should be invoked before the outputs can be used.
Otherwise the initial values for the outputs are given, i.e. "0".

Instance name
Formal parameter

Current parameter

CLOCK () ;

Pulse (IN:=COUNT.Q, PT:=t#1s) ;
COUNT (CU:=CLOCK.CLK3, R:=reset, PV:=100 + value) ;

Structured text ST

376 840 USE 503 00 October 2002

Invocation of the function block in FBD.

Function Block/
DFB Invocation
in Compact Form

The block invocation and the assignments for the inputs/outputs are also possible in
a more compact form, which saves runtime:
VAR

CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CLOCK () ;
COUNT (CU:=CLOCK.CLK3, R:=reset, PV:=100,

Q=>out, CV=>current) ;

Use of the
Function Block/
DFB Outputs

The outputs of the function block/DFBs can always be used when a variable (read
only) can also be used.

SYSCLOCK

CLOCK

CLK1
CLK2
CLK3
CLK4
CLK5

TIMER

CTU_DINT

COUNT

Q

CV

CU
R
PV

out
reset
100 current

out := COUNT.Q ;
current := COUNT.CV ;

Instance name Formal parameter

Current parameter

Structured text ST

840 USE 503 00 October 2002 377

Function Invocation

Using Functions Functions are provided by Concept in the form of libraries. The logic of the function
is created in C++ and cannot be edited in the ST Editor. The names of the available
function can be taken from the block libraries.

Invoking a function in ST:
out := LIMIT_INT (MN:=0, IN:=in1, MX:=5 + var) ;

Invoking the function FBD:

Unusable
Functions

Functions which have one or more outputs with data type ANY but no inputs with
data type ANY (generic outputs/inputs) cannot be used in ST.

Invoking a
Function:
Variant 1

The function can also be invoked using an instruction consisting of a current
parameter (variable) followed by the instruction assignment ":=" followed by the
name of the function followed by a list of value assignments (current parameters) for
the formal parameters in brackets. The order of the formal parameters in a function
block invocation is not significant.

Note: The declaration of the function invocation can take place manually or you
can create the block end and the assignment of the parameters using the menu
command Objects → Insert FFB.

ADD_INT

.1.1

5

var

LIMIT_INT

.1.2

MN

IN

MX

in1

0 out

Current parameter (output)

Current parameter (inputs)
Name of the function

out:=LIMIT_INT (MN:=0, IN:=in1, MX:=5 + var) ;

Formal parameter

Structured text ST

378 840 USE 503 00 October 2002

Invoking a
Function:
Variant 2

Functions are invoked using an instruction. The instruction consists of the current
parameter (variable) for the output followed by the instruction assignment ":="
followed by the name of the function followed by a list of current input parameters in
brackets. The order of the current parameters in a function invocation is significant.

Current parameter (output)

Current parameter (inputs)
Name of the function

out:=LIMIT_INT (0, in1, 5 + var) ;

Structured text ST

840 USE 503 00 October 2002 379

11.6 Syntax check and code generation

At a Glance

Overview This section describes the syntax check and the code generation of the structured
ST text.

What’s in this
Section?

This section contains the following topics:

Topic Page

Syntax Check 380

Code generation 381

Structured text ST

380 840 USE 503 00 October 2002

Syntax Check

Introduction A syntax check can be performed during the program/DFB creation with Project →
Analyze section.

Syntax Check
Options

With the menu command Options → Preferences → IEC Extensions... → IEC-
Extensions the syntax check options can be defined.

Allow Case
Insensitive
Keywords

If the check box Allow case insensitive keywords is checked, upper and lower
case for all keywords is enabled.

Allow nested
comments

If the check box Nested comments authorized is checked, nested comments can
be entered. There are no limits to the nesting depths.

Allow Leading
Digits in
Identifiers

If the check box Allow leading digits in identifiers is checked, figures as the first
character of identifiers (i.e. variable names, step names, EFB names) are possible.
Identifiers, which consist solely of figures are, however, not authorized, they must
contain at least one letter.

Unassigned
Parameters
Cause Warnings

The IEC 1131-3 permits functions and Function Blocks to be called up without
calling up the assignment of all the input parameters. These unused parameters are
implicitly assigned a 0, or they retain the value from the last call up (Function Blocks
only).

If in the menu command Options → Preferences → Analysis... → Analysis the
check box Unassigned parameters cause warnings is checked, a list of these
unused parameters is displayed in the message window when generating the code.

Note: The settings in this dialog are used in the project description (PRJ.DSK) and
in the Concept installations description (CONCEPT.DSK), i.e. they are valid for the
entire Concept installation.
If a project is opened, that was created using different settings (e.g. Allow nested
comments in the project and not in the actual Concept Installation), errors can
occur when opening the project.

Structured text ST

840 USE 503 00 October 2002 381

Code generation

At a Glance The menu command Project → Options for code generation is used to define
options for code generation.

Fastest code
(restricted
check)

If the check box Fastest Code (restricted check) is activated, a runtime-optimized
code will be generated.

This runtime optimization is achieved with integer arithmetic (e.g. "+" or "-") with
simple process commands instead of EFB calls.

Process commands are much faster than EFB calls, but they generate no error
messages, such as e.g. Arithmetic or Array overrun. This option should only be used
if it has been ensured that the program is free of arithmetic errors.

Example: Fastest
code

IF i <= max THEN (*i and max are of INT type*)
 i := i +1 ;
END_IF;

If Fastest Code (restricted check) is selected, the addition "i1 + 1" is executed with
the process command "add". The code is now faster than if EFB ADD_INT had been
called up. However, no runtime error is generated if "max" is 32767. In this case, "i"
would overrun from 32767 to -32768!

Activate loop
control

This check box activates a software watchdog for continuous loops.

If this check box is checked, with loops within IL and ST sections, it is tested whether
these loops are again exited within a certain time. The time authorized depends on
the manually defined watchdog time. The authorized time for all loops combined
constitutes 80% of the Hardware watchdog time. In this way triggering of the
hardware watchdog by endless loops is disabled. If a time consuming loop or an
endless loop is detected, processing of the affected section will stop, an entry in the
Event display will be generated and processing of the next section will begin. In the
next cycle, the segment will be re-processed until a time consuming loop or an
endless loop is detected once again, or until the segment is finished correctly.

Note: If the hardware watchdog stops the PLC when a time consuming loop or an
endless loop is detected, this option should not be activated. The hardware
watchdog itself is not switched off by this function.

Structured text ST

382 840 USE 503 00 October 2002

11.7 Online functions of the ST programming language

Structured text ST

840 USE 503 00 October 2002 383

Online functions

Description The online functions available in the programming language Instruction List (IL) are
available here (see Online functions of the IL instruction list , p. 333).

Structured text ST

384 840 USE 503 00 October 2002

11.8 Creating a program with the structured ST text

Structured text ST

840 USE 503 00 October 2002 385

Creating a program in structured ST text

At a Glance The following description contains an example of the creation of a program in the
programming language of structured ST text. This creation is divided into 2 main
steps:

Generating a
section

The procedure for generating a section is as follows:

Step Action

1 Generating a section (See Generating a section, p. 385)

2 Creating the logic (See Creating the logic, p. 386)

Step Action

1 Using the menu command File → New section... and enter a section name.

Note: The section name (max. 32 characters) is not case-sensitive and must be
unique throughout the project. If the name entered already exists, a warning is
given and another name must be chosen. The section name must correspond to
the IEC name conventions, otherwise an error message is displayed.

Note: In accordance with IEC1131-3, only letters are permitted as the first
character of names. Should numbers be required as the first character, however,
the menu command Options → Preferences → IEC Extensions... → Allow
leading digits in identifiers.

Structured text ST

386 840 USE 503 00 October 2002

Creating the
logic

The procedure for creating the logic is as follows:

Step Action

1 Declare the Function Block and DFBs, which are to be used, with assistance
from VAR…END_VAR.

Example:
VAR

 RAMP_UP, RAMP_DOWN, RAMP_X : TON

 COUNT : CTU_DINT ;

END_VAR

2 Declare the variables and their initial value in the Variable Editor.

3 Create the logic of the program.

Example:
SUM : = 0 ;

FOR I = 1 TO 3 DO

 FOR J = 1 TO 2 DO

 IF FLAG = 1 THEN EXIT;

 END_IF;

 SUM := SUM + J ;

 END_FOR ;

 SUM = SUM + I ;

END_FOR

4 Save the section with the menu command Data file → Save project .

CBA

840 USE 503 00 October 2002 i

A
Access Rights, 701, 694, 702
Action variable, 241
Actions, 240

Process, 259
Activate dialogs, 92
Actual parameters

FBD, 182
LD, 215

Alias designations
Step, 266
Transition, 266

Alternative branch, 248
Alternative connection, 250
Animation, 539, 679, 682

FBD, 193
General information, 606
IEC section, 607
IL, 337
IL/ST, 334
LD, 226
LL984 section, 609
Section, 606
SFC, 270, 272

ANY Outputs, 373
Archiving

DFB, 674
EFB, 674
Project, 674

ARRAY
Range Monitoring, 527

ASCII message editor, 543, 545, 550
Combination mode, 559, 560
Control code, 549
Direct mode, 559, 560
Flush (buffer), 551
Generals, 546
How to continue after getting a warning,
557, 558
How to Use, 554
Message Number, 555
Message text, 556
Offline mode, 559, 560
Repeat, 552
Simulation text, 556
Spaces, 549
Text, 547
User interface, 553, 554
Variables, 548

ASCII messages, 56, 91
Assign instructions

ST, 357
Assignment

=>, 376
Atrium

Memory optimization, 163
Atrium example

INTERBUS controller, 877
Atrium first startup

DOS Loader, 1014
EXECLoader, 996
Modbus Plus, 996, 1014

Auto-Log-Out, 112

Index

Index

ii 840 USE 503 00 October 2002

Automatic Connection, 1068, 1071
Available functions in OFFLINE and ONLINE
modes, 76

B
Backplane Expander

Configure, 98
Edit I/O Map, 99
Error handling, 100
Generals, 99

Block call up
IL, 320
ST, 372

C
Call

DFB, 319
FFB, 319
FFB, 327
Project, 744

Chain jump, 246
Chain loop, 247
Change

Coil, LD, 220
Contact, LD, 220
FFB, FBD, 187
FFB, LD, 220

Changing signal states of a Located variable
Reference data editor, 535

Close Column
LL984, 398

Closer
LD, 205

Code generation
FBD, 191
IL, 332
ST, 381
LD, 224

Coil
Change, LD, 220
LD, 206
Replace, LD, 220

Coil - negated
LD, 207

Coil – negative edge
LD, 208

Coil – positive edge
LD, 207

Coil - reset
LD, 208

Coil - set
LD, 208

Cold restart, 37
Comments

Data type editor, 518
Derived data type, 518

Communication, 14
Compact

Memory optimization, 147
Compact configuration

RTU extension, 105
Compact example, 871
Compact first startup

DOS Loader, 977, 1011
EXECLoader, 958, 992
Modbus, 958, 977
Modbus Plus, 992, 1011

Concept DFB, 415, 455
Concept ModConnect, 915

Integrating new Modules, 919
Removing modules, 920
Use of Third Party Modules in Concept,
922

Concept PLCSIM32, 682
Concept Security, 691, 692, 694, 701, 702
Concept SIM, 679
CONCEPT.INI, 1027, 1029

General, 1030
LD section settings, 1035
Path for Global DFBs, 1033
Path for Help Files, 1033
Path for MBPPATH.INI, 1033
print settings, 1031
Project Name Definition, 1032
Reading Global DFBs, 1033
Register Address Format Settings, 1032
Representation of internal data, 1035
Security Settings, 1037
Setting for Online Processing, 1036
Setting for the Address Format, 1036

Index

840 USE 503 00 October 2002 iii

Settings for Warning Messages, 1036
Storage of Global DFBs during Upload,
1033
Variable Storage Settings, 1032

Configuration, 51, 69
Backplane Expander Config, 98
Ethernet, 104
Ethernet I/O Scanner, 106
General information, 71
INTERBUS, 102
Network systems, 92
Optional, 90
OFFLINE and ONLINE mode, 74
Profibus DP, 103
RTU extension, 105
Unconditional, 78
Various network systems, 101

Configuration example
Atrium-INTERBUS controller, 877
Compact controller, 871
Momentum-Ethernet bus system, 895
Momentum-Remote I/O bus, 887
Quantum-INTERBUS control, 835
Quantum-Peer Cop, 863
Quantum-Profibus DP controller, 849
Quantum-Remote control with DIO, 826
Quantum-Remote control with RIO, 807
Quantum-Remote control with RIO
(series 800), 815
Quantum-SY/MAX controller, 841

Configuration extensions, 92
Connect

PLC, 565
Automatically with command line
parameters, 1068
Automatically with the CCLaunch Tool,
1071

Connect to IEC Simulator (32-bit), 578
Constant Scan, 582
Constants, 35
Contact

Change, LD, 220
LD, 205, 206
Replace, LD, 220

Context help, 746

Convert
DFBs, 911
Macros, 911
Modsoft programs, 923
Projects, 911
RDE templates, 533

CPU selection for the PLC type, 80
Create

DFB, 436
FFB, FBD, 186
FFB, LD, 219
Macro, 467
Program, 47
Project, 47
Project Symbol, 744

Creating a program
IL, 339

Cyclical Setting of Variables
Reference Data Editor, 536

D
Data exchange between nodes on the
Modbus Plus network, 93
Data flow, 221

FBD, 189
Data protection, 55
Data protection in the state RAM, 94
Data Type Definition

Extended (larger than 64 Kbytes), 507
Data type editor, 499, 501

Comments, 518
Elements, 510
Key words, 512
Names, 516
Separators, 517
Short Cut Keys, 765
Syntax, 509
Use of memory, 521

DDT, 507
Declaration of variables, 480
Declare

Actions, 259
Step properties, 257
Transition, 264

Index

iv 840 USE 503 00 October 2002

Defining Colors
INI File, 1036

Defining the LD contact connection
Settings in the INI file, 1035

Defining the number of LD columns/fields
Settings in the INI file, 1035

Delete
DFB, 676
Macro, 676
Memory zones from the PLC, 584
PLC contents, 584
Project, 676

Derived Data Type, 499, 501
Comments, 518
Elements, 510
Export, 629
Global, 505
Key words, 512
Local, 505
Names, 516
Separators, 517
Syntax, 509
Use of memory, 521

Derived Data Types
Use, 524

Derived Function Block, 418
FBD, 180
LD, 211

DFB, 415, 418
Archiving, 674
Call, 319
Convert, 911
Context sensitive help, 434
Create, 436
Creating Global Variables, 430
Delete, 676
Documentation, 663
FBD, 180
Global, 420
Invocation, 321, 373
LD, 211
Local, 420
Protect, 702

Diagnosis
Transition diagnosis, 277

Diagnosis viewer, 610

Dialog boxes, 740
Dialog interaction

LL984, 394
Direct Addresses, 35
Disable

Interrupt Sections, 42
Section, 42

Document section options, 667
Documentation

Contents, 664
DFB, 663
Keywords, 671
Layout, 665
Macro, 663
Project, 663

DOS Loader
Atrium first startup, 1014
Compact first startup, 977, 1011
Momentum first startup, 980, 983, 1017,
1020
Quantum first startup, 974, 1008
Startup when using Modbus, 973
Startup when using Modbus Plus, 1007

Download Changes, 600
Driver for 16 bit application capability with
Windows 98/2000/NT

Virtual MBX Driver, 940
Driver for connection between ModConnect
Host interface adapters and 32 bit
applications with Windows 98/2000/NT

MBX-Treiber, 941
Driver for Modbus Plus Function via TCP/IP

Ethernet MBX Driver, 943
Driver for Remote Operation

Remote MBX Driver, 942
DTY, 499, 501, 502
DX Zoom

LL984, 400

Index

840 USE 503 00 October 2002 v

E
Edit

Actions, 259
LL984, 393, 397
SFC, 253
Step properties, 257
Transition, 264

Edit I/O Map
Backplane Expander, 99

Editing local Drop, 808
Editing Networks

LL984, 398
Editors, 9
EFB

Archiving, 674
FBD, 178
LD, 209

EFBs for Interrupt Sections, 1065
Elementary Function

FBD, 178
LD, 209

Elements
Data type editor, 510
Derived Data Type, 510

EN
FBD, 181
LD, 213

ENC File, 15, 613, 614
Encrypt Logfile, 15, 693

ENC File, 614
ENO

FBD, 181
LD, 213

EQUAL, 566
Equation network

LL984, 404, 405
Equation network, Syntax and Semantics

LL984, 409
Error handling

Backplane Expander, 100
Establishing the hardware connection

Modbus Plus presettings, 945
Modbus presettings, 950

Ethernet, 578

Ethernet / I/O Scanner
Configurator, 106
How to use the Ethernet / I/O Scanner,
109

Ethernet Bus System
Create online connection, 910
Momentum, 896

Ethernet MBX Driver
Driver for Modbus Plus Function via
TCP/IP, 943

Ethernet with Momentum, 105
Ethernet with Quantum, 104
Event Viewer

INI Settings, 1039
Example of hardware configuration

Atrium-INTERBUS controller, 877
Compact controller, 871
Momentum-Ethernet bus system, 895
Momentum-Remote I/O bus, 887
Quantum-INTERBUS control, 835
Quantum-Peer Cop, 863
Quantum-Profibus DP controller, 849
Quantum-Remote control with DIO, 826
Quantum-Remote control with RIO, 807
Quantum-Remote control with RIO
(Series 800), 815
Quantum-SY/MAX controller, 841

Exchange Marking
Macro, 462

EXEC file, 1023
CPU 424 02, 125
CPU X13 0X, 125
Momentum, 160

EXECLoader
Atrium first startup, 996
Compact first startup, 958, 992
Momentum first startup, 962, 967, 999,
1003
Quantum first startup, 954, 988
Startup when using Modbus, 953
Startup when using Modbus Plus, 987

Execution Order
FBD, 187
Section, 41
Timer Event Sections, 1051

Index

vi 840 USE 503 00 October 2002

Execution sequence
LD, 221

Export, 619
Derived Data Type, 629
General Information, 622
PLC Configuration, 658
Section, 625
Variable, 629

Exporting located variables, 490
Expressions

ST, 345
Extended memory, 129

F
Factory Link, 656
FBD, 173

Actual parameters, 182
Animation, 193
Calling a macro, 476
Code generation, 191
Data flow, 187, 189
Derived Function Blocks, 180
DFB, 180
EFB, 178
Elementary Function, 178
Elementary Function Block, 179
EN, 181
ENO, 181
Execution order, 187
FFB, 178
Function, 178
Function Block, 179
Icon bar, 755
Link, 182
Loop, 189
Online Functions, 193
Program creation, 196
Short Cut Keys, 768
Text Object, 184
UDEFB, 181
User-defined Elementary Function, 181

FFB
Call, 319, 327
Change, FBD, 187
Change, LD, 220
Create, FBD, 186
Create, LD, 219
FBD, 178
Insert, FBD, 186
Insert, LD, 219
Invocation, 321, 373, 377
LD, 209
Position, 186, 219
Replace, FBD, 187
Replace, LD, 220

Function
FBD, 178
LD, 209

Function Block
FBD, 179
LD, 210

Function Block language, 173
Function Blocks for Interrupt Sections, 1065

G
General, 1

Backplane Expander, 99
Hardware configuration, 71
Loading a project, 598
Online control panel, 581
Online functions, 564
OFFLINE and ONLINE mode, 75
PLC configuration, 72
PLC Connection, 566
Reference Data Editor, 532
Select process information, 593
Variables editor, 480

Generate
Project symbol, 743

Global data transfer
Peer Cop, 867

Global derived data type, 505

Index

840 USE 503 00 October 2002 vii

Global DFB, 420
Defining the Path, 1033
INI File, 1033
Reading, 1034
Storing, 1034

Global macro, 460
Global Variables in DFBs, 430

H
Hardware

Performance, 707
Head setup, 53
Help, 746
Help Files

Defining the Path, 1033
How to use the Ethernet / I/O Scanner

Ethernet / I/O Scanner, 109

I
I/O Event Sections, 1060

Handling, 1041
Priority, 1061
Runtime Error, 1062

I/O map, 52, 87
Icon bar, 753, 754, 755, 756, 758
Icons, 751, 753, 754, 755, 756, 758, 759,
760, 762
Icons_Project Browser, 762
Identifier, 262
IEC

Hot Standby data, 83
Momentum first startup, 962, 999, 1017

IEC conformity, 779
IEC section

Animation, 607
IL, 279

Animation, 334, 337
Block call up, 320
Code generation, 332
Creating a program, 339
Instruction, 283, 284
List of Symbols, 759
Modifier, 287
Online functions, 333, 334

Operands, 285
Operators, 288, 295
Short Cut Keys, 765
Syntax check, 330
Tag, 291

IL command
call function block, 321
Compare, 310, 311, 314
Comments, 294
Compare, 312, 313, 315
Declaration, 292
DFB invocation, 321
Function call, 327
Invert, 305
Reset, 299
Set, 298
VAR...END_VAR, 292

IL operation
addition, 306
Boolean AND, 300
Boolean exclusive OR, 304
Boolean OR, 302
Call DFB, 319
Call function block, 319
Division, 309
Jump to label, 316
Load, 296
Multiplication, 308
Store, 297
Subtraction, 307

Import, 619
General Information, 622
INTERBUS configuration, 884
PLC Configuration, 658
Profibus DP configuration, 856
Section, 630, 635, 645, 646, 647
Structured variables, 653
Variables, 649, 653, 656

INC
Include File, 507

Include File
Extended Data Type Definition, 507

Index

viii 840 USE 503 00 October 2002

INI File, 1027
CONCEPT.INI, 1029
Event Viewer Settings, 1039
General Information, 1030, 1039
LD section settings, 1035
Path for Global DFBs, 1033
Path for Help Files, 1033
Path for MBPPATH.INI, 1033
Print settings, 1031
Project Name Definition, 1032
Projectname.INI, 1038
Project Specific, 1027
Reading Global DFBs, 1033
Register Address Format Settings, 1032
Representation of internal data, 1035
Security Settings, 1037
Setting for Online Processing, 1036
Settings for the Address Format, 1036
Settings for Warning Messages, 1036
Storage of Global DFBs during Upload,
1033
Variable Storage Settings, 1032

Initial step, 238
Insert

FFB, FBD, 186
FFB, LD, 219

Install
Loadables, 52
EXEC file, 1024
Modbus Plus driver
Windows 98/2000/NT, 939

Install the SA85/PCI85
Modbus Plus Preferences, 934
Windows NT, 937
Windows 98/2000/XP, 934

Instruction
IL, 283, 284
ST, 358

Instruction list, 279
INTERBUS controller, 836
INTERBUS Controller with Atrium, 878
INTERBUS export settings in CMD, 879
Interface Settings in Windows 98/2000/XP

Modbus Preferences, 948
Interface settings in Windows NT

Modbus Preferences, 950

Interrupt Processing, 1041
General, 1044

Interrupt Sections
Disable, 42
EFBs, 1065
Examples for Setting Parameters, 1054
Execution Order, 1051
I/O Event Sections, 1060
Operating System, 1052
Priority, 1061
Runtime Error, 1062
Scan Rate for Timer Event Sections,
1048
Timer Event Sections, 1047, 1049

Invocation
DFB, 321, 373
FFB, 321, 373, 377
Project, 743

J
Jump

SFC, 246

K
Key combinations, 751, 763, 764, 765, 768,
771, 777
Key words

data type editor, 512
derived data type, 512

Keys, 751, 763, 764, 765, 768, 771, 777

L
Ladder Diagram, 199
Ladder Logic 984, 387
LD, 199

Actual parameters, 215
Animation, 226
Calling a macro, 476
Closer, 205
Code generation, 224
Coil - negated, 207
Coil – negative edge, 208

Index

840 USE 503 00 October 2002 ix

Coil – positive edge, 207
Coil - reset, 208
Coil - set, 208
Coils, 206
Contacts, 205, 206
Data flow, 221
Derived function block, 211
EFB, 209
Elementary function, 209
EN, 213
ENO, 213
Execution sequence, 221
FFB, 209
Function, 209
Function block, 210
Icon bar, 758
Link, 214
Loops, 221
Online functions, 226
Opener, 205
Program creation, 229
Shortcut keys, 771
Text object, 217
UDEFB, 212
User-defined elementary function, 212

Learn monitoring times
SFC, 274

Libraries, 8
Limitations

LL984, 391
Link

FBD, 182
LD, 214

List of Symbols, 751, 759, 760
List of Tools, 751, 759, 760
Literals, 35
LL984, 387

Close Column, 398
Combination mode, 414
Dialog interaction, 394
Direct programming, 414
DX Zoom, 400
Edit, 393, 397
Editing Networks, 398
Equation network, 404, 405
Equation network, Syntax and

Semantics, 409
List of Symbols, 760
Momentum first startup, 967, 983, 1003,
1020
Navigation, 393
Online Restriction, 394
Online Search, 401
Open Column, 398
Open Row, 398
Programming modes, 413, 414
Reference Offset, 396
Reference Zoom, 399
References, 395
Replace References, 401
Requirements, 393
Section, 390
Segement, 390
Select, 397
Short Cut Keys, 777
Subroutines, 402
Trace, 401
Undo, 397
Variables, 395

LL984 Processing
speed optimized, 585

LL984 section
Animation, 609

Load reference data, 542
Loadables, 84

Atrium, 166
compact, 150
CPU 424 02, 131
CPU X13 0X, 131
CPU 434 12, 139
CPU 534 14, 139

Loading, 599
Loading a project, 597

General information, 598
Loading firmware, 1024
Local derived data type, 505
Local DFB, 420
Local macro, 460
Located variables

Changing signal states in RDE, 535
Log Encrypting, 15
LOG File, 613, 614

Index

x 840 USE 503 00 October 2002

Logging
LOG File, 614

Logging Write Access to the PLC, 613
Loop

FBD, 189
LD, 221

M
Macro, 455, 458

Calls from SFC, 473
Calls from FBD, 476
Calls from LD, 476
Context sensitive help, 465
Convert, 911
Create, 467
Delete, 676
Documentation, 663
Exchange marking, 462
Global, 460
Local, 460

Maximum supervision time, 238
MBPPATH.INI

Defining the Path, 1033
MBX Driver

Driver for connection between
ModConnect Host interface adapters and
32 bit applications with Windows 98/
2000/NT, 941

Memory, 115
Optimize, 119
Structure, 117

Memory and optimization
Atrium, 163
Compact, 147
Momentum, 157
Quantum, 122, 136

Memory partitions, 51
Memory statistics, 595
Menu commands, 737
Minimum configuration, 51
Minimum supervision time, 239
MMS-Ethernet

Specify coupling modules, 92

Modbus
Compact first startup, 958, 977
Momentum first startup, 962, 967, 980,
983
Quantum first startup, 954, 974
Startup with DOS Loader, 973
Startup with the EXECLoader, 953

Modbus communication, 53
Modbus network link, 570
Modbus Plus

Atrium first startup, 996, 1014
Compact first startup, 992, 1011
Momentum first startup, 999, 1003, 1017,
1020
Quantum first startup, 988, 1008
Remote MBX Driver, 942
Startup with DOS Loader, 1007
Startup with the EXECLoader, 987
Virtual MBX Driver, 940
Write Restriction, 112

Modbus Plus Bridge, 576
Modbus Plus Network Connection, 571
Modbus Plus network node, 93
Modbus Plus Preferences

Installing the SA85/PCI85, 934
Installing the Modbus Plus driver in
Windows 98/2000/NT, 939
Establishing the hardware connection,
945
Startup, 933

Modbus Plus Routing Path
Automatic Connection, 1068, 1071

Modbus Preferences
Interface Settings in Windows 98/2000/
XP, 948
Interface Settings in Windows NT, 950
Transfer problems, 951
Establishing the hardware connection,
950
Startup, 947

ModConnect, 915
MODIFIED, 566
Modifier

IL, 287

Index

840 USE 503 00 October 2002 xi

Modsoft
Convertion, 923
Function compatibility, 932
References, 929

Momentum
Memory optimization, 157

Momentum example
Ethernet bus system, 895
Remote I/O bus, 887

Momentum first startup
DOS Loader, 980, 983, 1017, 1020
EXECLoader, 962, 967, 999, 1003
Modbus, 962, 967, 980, 983
Modbus Plus, 999, 1003, 1017, 1020

MSTR-Read-Operation, 113

N
Names

Datatype editor, 516
Derived datatype, 516

Navigation
LL984, 393

Network Configuration
TCP/IP, 897

Network Connection
Modbus Plus, 571

Network link
Modbus, 570
TCP/IP, 578

NOM/NOE
Disable Write Access, 112

NOT EQUAL, 566

O
Objects

Insert, LD, 219
SFC, 237

Offline functions in the configurator, 76
Online, 679, 682

INI File, 1036
SFC, 269

Online Control Panel, 581, 585, 589
Online diagnosis, 610

Online functionen, 14, 561
Configurator, 76
General information, 563, 564
FBD, 193
IL, 333
IL/ST, 334
LD, 226
ST, 382
SFC, 270, 272

Online help, 746
ONLINE Operation

Presettings, 569
Online Restriction

LL984, 394
Online Search

LL984, 401
Open

Project, 743, 744
Open Column

LL984, 398
Open Row

LL984, 398
Opener

LD, 205
Operands

IL, 285
ST, 346

Operating System
Timer Event Sections, 1052

Operators
IL, 288, 295
ST, 347

Optimize
PLC Memory, 119

Optional Configuration, 90

P
Page breaks for sections, 667
Parallel branch, 251
Parallel connection, 252
Parameterize ASCII interface, 94
Parameterize interfaces

ASCII interface, 94
Modbus interface, 94

Parameterize Modbus interface, 94

Index

xii 840 USE 503 00 October 2002

Parameters for Automatic Connection, 744
Password protection, 691
Path for Global DFBs

Settings in the INI File, 1033
Path for Help Files

Settings in the INI File, 1033
Peer Cop, 93, 864
Peer Cop communication, 54
Performance

hardware, 707
PLC family, 707

Phase
Timer Event Sections, 1049

PLC
Simulating, 677
Status, 733

PLC configuration, 50, 51, 69
Export, 658
General information, 72
Icons, 761
Import, 658

PLC Connection
General, 566

PLC family
Performance, 707

PLC Memory, 115
Optimize, 119
Structure, 117

PLC Memory and optimization
Atrium, 163
Compact, 147
Momentum, 157
Quantum, 122, 136

PLC memory mapping, 83
PLC selection, 80
PLC State, 566, 579, 594
Position

FFB, FBD, 186
FFB, LD, 219

Precondition for unconditional configuration,
79
Presettings for Modbus

Startup, 947
Presettings for Modbus Plus

Startup, 933
Presettings for ONLINE operation, 569

Print
Settings in the INI file, 1031
Sections, 667

Priority
I/O Event Sections, 1061

Proceed in the following way with the
configuration, 73
Process

Actions, 259
Program, 30
Project, 30
Step properties, 257
Transition, 264

PROFIBUS
Specify coupling modules, 92

Profibus DP controller, 850
Profibus DP export settings in SyCon, 850
Program

Create, 47
Processing, 30
Status, 733
Structure, 29, 30

Program creation
FBD, 196
LD, 229
ST, 385

Programming, 6
Programming languages, 9
Programming modes

LL984, 413, 414
Programs, 35
Project

Archiving, 674
Call, 744
Convert, 911
Create, 47
Delete, 676
Documentation, 663
Invoke, 743
Open, 743, 744
Processing, 30
Protect, 702
Structure, 29, 30

Index

840 USE 503 00 October 2002 xiii

Project Browser, 491
Keyboard operation, 496
Mouse operation, 496
Toolbar, 762

Project Name Definition
INI File Settings, 1032

Project Symbol
Generate, 743
Create, 744

Projectname.INI, 1027, 1038
Event Viewer Settings, 1039
General Information, 1039

Protect
DFB, 702
Project, 702

Q
Quantum

Memory optimization, 122, 136
Quantum example

INTERBUS control, 835
Profibus DP controller, 849
Quantum-Peer Cop, 863
Remote control with DIO, 826
Remote control with RIO, 807
Remote control with RIO (series 800),
815
SY/MAX controller, 841

Quantum first startup
DOS Loader, 974, 1008
EXECLoader, 954, 988
Modbus, 954, 974
Modbus Plus, 988, 1008

Quantum Security Parameters, 112

R
Range Monitoring

ARRAY, 527
RDE, 531

Converting RDE templates, 533
Cyclical Setting of Variables, 536
General, 532
Toolbar, 762

Reactivate flash save, 588

Reading Global DFBs
Settings in the INI File, 1033

Reference data editor, 531
Changing signal states of a Located
variable, 535
Converting RDE templates, 533
Cyclical Setting of Variables, 536
General, 532
Replacing variable names, 541

Reference Offset
LL984, 396

Reference Zoom
LL984, 399

References
LL984, 395

Register Address Format
INI File Settings, 1032

Remote controller with DIO, 831
Remote controller with RIO, 812
Remote controller with RIO (series 800), 820
Remote MBX Driver

Modbus Plus, 942
Replace

coil, LD, 220
contact, LD, 220
FFB, FBD, 187
FFB, LD, 220
Variable names, 541

Replace References
LL984, 401

Requirements
LL984, 393

RTU extension
Compact configuration, 105
Configure, 105

Runtime Error
I/O Event Sections, 1062

S
Save To Flash, 585
Scan

Constant, 582
Scan rate

Timer Event Sections, 1048

Index

xiv 840 USE 503 00 October 2002

Scan times
single, 583

Search and Replace
Variable names and addresses, 483

Search and paste
Variable names and addresses, 487

Section, 40
Animation, 606
Disable, 42
Execution order, 41
Export, 625
Import, 630, 635, 645, 646, 647
Import, 631, 642
LL984, 390
Status, 733

Secure Application, 15
Security, 691, 692, 694, 701, 702
Segement

LL984, 390
Segment manager, 86
Select

LL984, 397
Select process information

General information, 593
Status and memory, 592

Selecting process information
Status and memory, 592

Separators
Data type editor, 517
Derived data type, 517

Set/Change PLC Password, 589
Setting up and controlling the PLC, 580
Setup and control PLC

General information, 581
SFC

’SFCSTEP_STATE’ variable, 240
’SFCSTEP_TIMES’ variable, 239
Action, 240, 259
Action variable, 241
Alternative branch, 248
Alternative connection, 250
Animation, 270, 272
Calling up macros, 473
Edit, 253
Icon bar, 756
Identifier, 262

Initial step, 238
Jump, 246
Learn monitoring times, 274
Link, 245
Maximum supervision time, 238
Minimum supervision time, 239
Objects, 237
Online, 269
Online functions, 270, 272
Parallel branch, 251
Parallel connection, 252
Short Cut Keys, 768
Step, 238
Step delay time, 238
Step duration, 238
Step properties, 257
String, 272
Text object, 252
Transition, 242, 264
Transition diagnosis, 277
Transition section, 243
Transition variable, 244
Waiting step, 238

Short cut keys, 751, 763
Simple sequences, 245
Simulation, 677, 679, 682

SPS, 679, 682
Single sweeps, 583
Special options, 96
Specific data transfer

Peer Cop, 869
Speed optimized LL984- Processing, 585
SPS

Simulate, 679, 682
ST, 341

Animation, 334
Assign instructions, 357
Block call up, 372
Code generation, 381
Expressions, 345
Instructions, 358
List of Symbols, 759
Online functions, 334, 382
Operands, 346
Operators, 350
operators, 347

Index

840 USE 503 00 October 2002 xv

Program creation, 385
Short Cut Keys, 765
syntax check, 380

ST Command
-, 352, 354
(), 351
*, 352
**, 351
+, 353
>, 354
>=, 354
Addition, 353
, 355, 355
&, 356
=, 354
/, 353
AND, 356
Assignment, 359
Boolean AND, 356
Boolean Exclusive OR, 356
Boolean OR, 356
Call function block, 373
CASE...OF...END_CASE, 365
Complement formation, 352
Declaration, 360
Division, 353
ELSE, 363
ELSIF...THEN, 364
Empty instruction, 371
Equal to, 354
EXIT, 371
Exponentiation, 351
FOR...TO...BY...DO...END_FOR, 366
FUNCNAME, 351
function invocation, 377
Greater than, 354
Greater than/Equal to, 354
IF...THEN...END_IF, 362
Less than, 355
Less than or equal to, 355
MOD, 353
Modulo, 353
Multiplication, 352
Negation, 352
NOT, 352
Not equal to, 355

OR, 356
REPEAT...UNTIL...END_REPEAT, 370
Subtraction, 354
Use of parentheses, 351
VAR...END_VAR, 360
WHILE...DO...END_WHILE, 368
XOR, 356

ST Comment
Comment, 371

Start behavior
Variable, 37
Digital outputs, 39

Startup
Presettings for Modbus, 947
Presettings for Modbus Plus, 933

Startup with DOS Loader
Modbus, 973
Modbus Plus, 1007

Startup with the EXECLoader
Modbus, 953
Modbus Plus, 987

State of the PLC, 579
Status, 566
Status bar, 733
Step, 238

Alias designations, 266
Step delay time, 238
Step duration, 238
Step properties

Process, 257
Storage of Global DFBs during Upload

Settings in the INI File, 1033
String

Control, 272
Structure

PLC Memory, 117
Program, 29, 30
Project, 29, 30

Structured text, 341
Structured variables

Import, 653
Subroutines

LL984, 402
Symax-Ethernet

specify coupling modules, 92
Symbols, 751, 759, 760

Index

xvi 840 USE 503 00 October 2002

Syntax
Data type editor, 509
Derived Data Type, 509

Syntax check
IL, 330
ST, 380

T
Tag

IL, 291
TCP/IP

Network Configuration, 897
Network link, 578

TCP/IP-Ethernet
specify coupling modules, 92

Text Object
FBD, 184
LD, 217
SFC, 252

Timer Event Sections, 1047
Define Scan Rate, 1048
Defining the Phase, 1049
Examples for Parameterization, 1054
Execution Order, 1051
Handling, 1041
Operating System, 1052

Toolbar, 753, 754, 755, 756, 758
Tools, 17
Trace

LL984, 401
Transfer problems

Modbus Presettings, 951
Transition, 242

Alias designations, 266
Declare, 264
Process, 264

Transition diagnosis, 277
Transition section, 243
Transition variable, 244

U
UDEFB

FBD, 181
LD, 212

Unconditional Configuration, 78
Precondition, 79

Unconditional locking of a section, 538
Undo

LL984, 397
Uploading PLC, 603
User-defined Elementary Function

FBD, 181
LD, 212

Utility program, 17

V
Variable Editor, 479

Declaration, 480
Exporting located variables, 490
Search and replace, 483
Search and paste, 487

Variable Storage
INI File Settings, 1032

Variables, 35
ASCII message editor, 548
Export, 629
Import, 649, 653, 656
LL984, 395
Start behavior, 37

VARINOUT variables, 423
Various PLC settings, 56
View Tool, 614
Virtual MBX Driver

Modbus Plus, 940

W
Waiting step, 238
Warm restart, 37
Window elements, 733
Window types, 732

Index

840 USE 503 00 October 2002 xvii

Windows, 729
Check box, 742
Command buttons, 741
Dialog boxes, 740
Lists, 741
Menu commands, 737
Option buttons, 741
Status bar, 733
Text boxes, 741
Window, 731
Window elements, 733
Window types, 732

Index

xviii 840 USE 503 00 October 2002

